Catherine the Great of Russia once decided to take a cruise down the Danube to view that part of her empire. Her prime minister, Grigory Potemkin, knowing that the poverty of the region would not be pleasing to the empress, allegedly built fake villages along the banks of the river and forcibly staffed these with cheering peasants to impress the empress with how prosperous and thriving the area was. The term “Potemkin village” has since come to be used to refer to “an impressive facade or show designed to hide an undesirable fact or condition” (“Potemkin Village,” 1984).

You don’t want your proposal to be a Potemkin village—one that does not reflect what you actually believe or plan to do, but is simply fabricated to get approval or money for the study or to fit what you think a proposal should say. Aside from the fact that reviewers are usually fairly good at detecting such facades, the most serious danger of a Potemkin village proposal is that you may be taken in by your fabrication, thinking that you have, in fact, solved your design problems, and thus ignoring your actual theories, goals, questions, and situation and the implications of these—your real research design.

Such proposals are often the result of the writer not having worked out (or worse, not having understood the need to work out) the actual design of the study, and thus having to substitute a fake design for this. An ignorance of, or refusal to acknowledge, this real design and the conditions that affect it are certain to cause problems when you actually try to do the study. For this reason, you need to have a fairly clear idea of your design before you attempt to write a proposal for the study. Attempting to create a proposal before you have your design at least tentatively worked out will not only make the task of writing the proposal much more difficult (as I argued previously, in the Preface to the first edition of this book), it may lock your thinking into a Potemkin village design, one that will hinder your development of a workable real design for your study.

Of course, as discussed in previous chapters, your research design will evolve as you conduct the study, and therefore a proposal for a qualitative study can’t present an exact specification of what you will do. However, this is no excuse for not developing the design for your study in as much detail as you can at this point, or for failing to clearly
communicate this design. In your proposal, you simply need to explain the kinds of flexibility that your study requires, and indicate, as best you can, how you will go about making future design decisions. For dissertation proposals, your committee often wants to see that you have demonstrated the ability to design a coherent and feasible study, providing evidence that you are aware of the key issues in your proposed research and ways of dealing with these, rather than requiring a completely worked-out design.

In this chapter, I explain the connections between a study’s research design and an effective proposal for that study, and provide some guidelines and advice on how to accomplish the transition from design to proposal. I believe that the model that I have presented in this book simplifies and facilitates this transition, and provides a useful framework for thinking about proposal structure and content. Much more detailed and specific advice on proposal writing is provided by Locke, Spirduso, and Silverman (2007).

I will begin with the purposes and structure of a research proposal, and then take up the ways in which the design of your study connects to these purposes and structure. Finally, I will discuss the specific parts of a proposal and the key issues that a proposal for qualitative research needs to address.

THE PURPOSE OF A PROPOSAL

The structure of a proposal shouldn’t follow an arbitrary format or set of rules; it’s closely tied to the purpose of a proposal. This purpose is so fundamental that when you are working on a proposal, you should post it above your desk or computer: The purpose of a proposal is to explain and justify your proposed study to an audience of nonexperts on your topic.

There are four key concepts in this statement:

1. Explain. You want your readers to clearly understand what you plan to do. Locke, Spirduso, and Silverman (2000) emphasized that “advisors and reviewers misunderstand student proposals far more often than they disagree with what is proposed” (p. 123). This observation is abundantly supported by my experience, both with advising and reviewing student proposals and with submitting and reviewing grant proposals. In writing and editing your proposal, clarity is a primary goal.

2. Justify. You want the readers of your proposal to understand not only what you plan to do, but why—your rationale for how you plan to conduct the study. Proposals are often not accepted, even when the study is clearly described, because it isn’t clear why the author wants to do the study a certain way. Your readers may not understand how your proposed methods will provide valid answers to your research questions, or how the questions address important issues or purposes. They may also question whether you have a good reason for doing the study this way, or if you are simply using “boilerplate” language that you’ve borrowed from other studies.

3. Your proposed study. Your proposal should be about your study, not the literature, your research topic, or research methods in general. You should ruthlessly edit out anything in
the proposal that does not directly contribute to the explanation and justification of your study. A proposal is no place to display your general knowledge of the literature on your topic,¹ your theoretical or methodological sophistication, or your political views on the issues you plan to investigate;² this will generally annoy your reviewers, who are trying to determine if your proposed study makes sense.

Students sometimes focus their proposal on their planned dissertation, rather than on the research that they propose to do. They provide lengthy, chapter-by-chapter descriptions of what the dissertation will cover, and use language such as “In my dissertation, I will discuss . . .” While it can occasionally be helpful, in explaining and justifying aspects of your study, to refer to how you intend to present these in the dissertation, these references to your dissertation more often are red herrings, interfering with your presentation of the actual research and its design.

4. Nonexperts. You can’t assume any particular specialized knowledge on the part of your readers. Grant proposals in the social sciences and related fields are generally not assigned to readers based on their expertise on your specific topic, and students often will have faculty reviewing their proposals who are not knowledgeable about the specific area of the proposed study. You need to carefully examine your proposal to make sure that everything in it will be clear to a nonspecialist. (The best way to do this is generally to give the proposal to some nonspecialists and ask them to tell you what isn’t clear.)

THE PROPOSAL AS AN ARGUMENT

Another way of putting the points made previously is that your proposal is an argument for your study. It needs to explain the logic behind your proposed research, rather than simply describe or summarize the study, and to do so in a way that nonspecialists will understand. (It should not, however, attempt to defend your anticipated conclusions; doing so may raise serious questions about your biases. You want to demonstrate that you are open to having your prior beliefs overturned by your data.) Each piece of your proposal should form a clear part of this argument.

The essential feature of a good argument is coherence, and a proposal needs to be coherent in two different senses of this term. First, it has to cohere—flow logically from one point to the next, and hang together as an integrated whole. The connections among different components of your design are crucial to this coherence. You need to understand why you’re doing what you’re doing, rather than blindly following rules, models, or standard practice. Examples 7.1 and 7.2, Exercise 7.1, and Appendices A and B can help you to achieve this.

Second, your argument has to be coherent—to make sense to the reviewers. You need to put yourself in your readers’ shoes, and think about how what you say will be understood by them. This requires avoiding jargon, unnecessarily complex style, and what Becker (2007) called “classy writing.” A failure to achieve these two aspects of coherence is the source of the most common problems with proposals: Either they have inconsistencies or gaps in their reasoning, or they don’t adequately communicate to the reviewers what the author wants to do and why, or both. Both of the two example
proposals (Appendix A and B) are good examples of clear, straightforward language that largely avoids these problems.

THE RELATIONSHIP BETWEEN YOUR RESEARCH DESIGN AND YOUR PROPOSAL ARGUMENT

Reviewers will be asking many questions while reading your proposal, questions that the argument of your proposal needs to address. According to Locke et al. (2007), the author must answer three questions:

1. What do we already know or do?
2. How does this particular question relate to what we already know or do?
3. Why select this particular method of investigation? (p. 17)

These questions emphasize the connections along one axis of my model of research design, the axis consisting of your conceptual framework, research questions, and methods (see Figure 7.1).

In contrast, Przeworski and Salomon (1988), in their suggestions for applicants seeking funding from the Social Science Research Council, stated that every proposal reader constantly scans for clear answers to three questions:

- What are we going to learn as the result of the proposed project that we do not already know?
- Why is it worth knowing?
- How will we know that the conclusions are valid? (p. 2)

These questions, in contrast to those of Locke et al. (2007), emphasize the connections along the other axis of the model, the one consisting of your goals, research questions, and validity.

Thus, the relationships among the components of your research design constitute a crucial part of the argument of your proposal. These relationships provide the coherence that your argument depends on. Above all else, your proposal must convey to the readers your answers to the previous questions, and what the connections are between these answers.

A MODEL FOR PROPOSAL STRUCTURE

The model of research design that I have presented in this book can be directly mapped onto one way of organizing a qualitative proposal. This format is not the only way to
structure a proposal, but it is a fairly standard and generally understood format, and one that lends itself particularly well to communicating the design of a qualitative study. However, every university and funding source has its own requirements and preferences regarding proposal structure, and these must take precedence for your official proposal if they conflict with what I present here. I still recommend, though, that you use the structure I describe here as a first step in writing the proposal, even if you will eventually convert it into a different format. I have seen too many students become lost by trying to use a traditional or required proposal structure to develop their design, producing a repetitive, incoherent argument that fails to convey the real strengths of their research.

I will first display the relationships between research design and proposal structure in diagram form (Figure 7.2), and then go through each part of the proposal structure in detail, explaining how it relates to my model of research design. This explanation will make more sense if it is read in conjunction with the two example proposals, (Appendix A and B) and my commentary that I've included in the first proposal. What is important about the structure I describe isn't having separate sections with these names; this is simply a useful organizational tool that can be modified if it conflicts with the structure you are required to follow. The point is to organize the issues in a way that clearly communicates your research design and its justification.

In many universities and departments, there is a standard, three-chapter format to which dissertation proposals must conform. (There is also a widespread belief that these three chapters should constitute the first three chapter of your dissertation, an idea that I think is particularly inappropriate and unhelpful for qualitative dissertations. In your
dissertation, all of these chapters, but particularly the methods chapter, will need substantial revision based on what actually happens in your research.) Elizabeth Riddle’s proposal (Appendix B) illustrates how the different components I describe can be incorporated into this format.

1. Abstract

Not all proposals will require an abstract, but if you need to have one, this is the place to provide an overview and “road map,” not just of the study itself, but also of the argument of your proposal. Your abstract should present in abbreviated form the actual argument for your research, not simply provide placeholders that will later be filled in with real content (Becker, 2007, pp. 50–53). Regan-Smith’s abstract (see Appendix A) is a model for how to do this. A useful tool in developing this argument is the argument outline exercise presented later (Examples 7.1 and 7.2 and Exercise 7.1).

2. Introduction

The introduction to your proposal “sets the stage for your research, explaining . . . what you want to do and why” (Peters, 1992, p. 202). It should clearly present
CHAPTER 7 RESEARCH PROPOSALS

the goals of your study and the problem(s) it addresses, and give an overview of your main research questions and of the kind of study you are proposing. (A full presentation of your research questions is often better reserved until after the conceptual framework section, when the theoretical grounding of the questions will be clearer, but this is not an absolute rule.) It should also explain the structure of the proposal itself, if this could be confusing.

3. Conceptual Framework

This section is often called the “literature review”; this term is misleading, for reasons that I explained in Chapter 3, but you may need to use it, depending on whom the proposal is written for. This section of the proposal has two key functions. First, it needs to show how your proposed research fits into what is already known (its relationship to existing theory and research) and how it makes a contribution to our understanding of your topic (its intellectual goals). Second, it needs to explain the theoretical framework that informs your study. These functions are usually accomplished by discussing prior theory and research, but the point is not to summarize what's already been done in this field. Instead, it is to ground your proposed study in the relevant previous work, and to give the reader a clear sense of your theoretical approach to the phenomena that you propose to study.

Thus, the essential characteristic of a good literature review is relevance; each work discussed should be relevant to your proposed study, and you need to explain how it is relevant—how it informs, or has implications for, your study—if this is not obvious. The American Psychological Association’s Publication Manual (2010), a widely used guide for dissertations, proposals, and publications in the social sciences and applied fields, says, “Cite and reference only works pertinent to the specific issue and not those that are of only tangential or general significance... avoid nonessential details; instead, emphasize pertinent findings, relevant methodological issues, and major conclusions” (p. 28). (For an extended discussion of this issue, see Maxwell, 2006.) Remember the point made in Chapter 3: Sometimes the most relevant theory or research for your study may come from outside the specific field of your topic.

One qualification to this principle is needed for the literature review in a dissertation proposal. Some advisors and committee members believe that this review should demonstrate that you know the literature in the field of your study, whether it is relevant to your specific study or not. If you are in this situation, your literature review will need to be more comprehensive than I describe; check with your committee about this. However, you still need to identify the work that is most relevant to your study and the specific ideas that you can use in your conceptual framework (and other aspects of your design), because doing this is essential to creating a coherent presentation of, and argument for, your research plans, as well as for actually publishing your results. (For more on these two conceptions of a dissertation literature review, and their consequences, see Maxwell, 2006).

Insofar as your personal experience and knowledge form an important part of your conceptual framework, these should be discussed somewhere in your proposal; both Martha Regan-Smith and Elizabeth Riddle devote a separate part of their conceptual
framework sections to these. The key issue, again, is relevance; the connection of the experience and views discussed in this section to your study must be clear.

Any pilot studies that you have done also need to be discussed in the proposal, explaining their implications for your research. This can be done in any of three places: at the end of the conceptual framework section; in a separate section immediately following the conceptual framework section; or, in some cases, after the presentation of your research questions, if a detailed grasp of these questions is important to understanding the pilot studies. Unless an important purpose of the pilot study was to try out the methods that you plan to use in your research, you should focus your discussion of your pilot studies on what you learned from them, rather than on the details of what you did.

4. Research Questions

As in my model of research design, the statement of your research questions is central to your proposal. Although you will usually present a brief statement of your main research questions in the introduction, I recommend putting a detailed discussion and explanation of these after the conceptual framework section. This is because the reasons for focusing on these particular questions may not be clear until the context of prior research, theory, and experience has been described. While you can create a short section just for your research questions, as Regan-Smith did, you can also put them at the end of the conceptual framework section, as Riddle did, or at the beginning of the methods section.

The research questions section, in addition to stating your questions, should clarify two key points, if the answers to these are not obvious:

1. How your questions relate to prior research and theory, to your experience and exploratory research, and to your goals.
2. How these questions form a coherent whole, rather than being a random collection of queries about your topic. Generally, a small number of clearly focused questions is far better than a larger number of questions that attempt to "cover the waterfront" on your topic. If you have more than two or three major questions, you need to think about whether some of these are best seen as subquestions of a broader question, or if your study is, in fact, attempting to do too much.

5. Research Methods

Your proposal probably doesn't need to justify qualitative methods in general, unless you have reasons to think that this could be a concern for some readers. You do need to explain and justify the particular methodological decisions you've made; for every decision, it should be clear why this is a reasonable choice. If you can't specify certain parts of your methods in advance (e.g., how many interviews you'll do), explain the basis on which you'll make your decision.

A description of the setting or social context of your study can be helpful in clarifying and justifying your choice of questions and methods. This description can be placed at the beginning of the methods section, or it can be a separate section just before or after
the research questions. A proposal for funding will also need to explain what resources you already have and what ones you are requesting money for, your qualifications and experience, and your timetable and budget; some of this can be included in the methods section, but you will probably need additional sections as well.\(^6\)

The methods section normally has several parts:

a. **Research design in the typological sense.** What kind of a study is this? This can include the particular type of study (e.g., a qualitative interview study) and, if relevant, the particular philosophical or methodological approach you will take (e.g., phenomenology, participatory action research, etc.; see my discussion of such approaches in Chapter 3, under Research Paradigms). This is not always necessary in a qualitative study, but it can sometimes be helpful to describe and justify the overall approach taken—for example, to explain why you have chosen to conduct a case study, or a comparison of two settings. If this doesn’t require a detailed explanation, it can often be addressed in the introduction; if your research questions are closely tied to the kind of study you are doing (e.g., if you are comparing two settings and your questions focus on this comparison), this may be best addressed in the section on research questions.

b. **The research relationships you plan to establish with those you are studying.** This is an important part of your design, as argued previously, but it is not usually an explicit part of a proposal. My advice is to discuss this relationship, particularly if it is an important and nonobvious source of information or insights, or if it raises potential data collection difficulties, ethical problems, or validity threats for the study. (See the concise description by Regan-Smith of her relationships with her participants, under Site Selection, and Riddle’s discussion of the relationships she planned to establish, in the Research Relationship section of Methods.)

c. **Setting and participant selection.** It is important not simply to describe these, but also to explain why you have decided to study these particular settings or to interview this particular selection (and number) of people.

d. **Data collection.** How you will get the information you need to answer your research questions. This should include a description of the kinds of interviews, observations, or other methods you plan to use, how you will conduct these, and why you have chosen these methods. For both selection and data collection, practical considerations are often important, and your proposal should be candid about these, rather than ignoring them or concocting bogus theoretical justifications for decisions that are, in fact, practically based. If any of your decisions are based mainly on practical considerations (such as studying an institution where you have contacts and easy access), you need to deal, at some point, with any potential validity threats or ethical risks that this raises.

e. **Data analysis.** What you will do to make sense of the data you collect. Be as explicit as you can about how your data will be analyzed; specific examples are generally more useful than abstract descriptions. Also, be clear about how these analyses will enable you to answer your research questions; you may want to include a version of your questions and methods matrix (Example 5.1) to illustrate this.

Issues of ethics can be dealt with as part of the methods section, but if there are significant ethical questions that could be raised about your study, it may be better to have a separate ethics section, as Martha Regan-Smith does.
6. Validity

Validity issues are often dealt with under methods, but I recommend a separate validity section, for two reasons. The first is clarity—you can explain in one place how you will use different methods to address a single validity threat (a strategy discussed previously, known as triangulation), or how a particular validity issue will be dealt with through selection, data collection, and analysis decisions. The second reason is strategic: Devoting a separate section to validity emphasizes that you’re taking validity seriously. For this and other issues in a proposal, it is often more important that your reviewers realize that you are aware of a particular problem, and are thinking about how to deal with it, than that you have an airtight plan for solving the problem.

A crucial issue in addressing validity is demonstrating that you will allow for the examination of competing explanations and discrepant data—that your research is not simply a self-fulfilling prophecy. Locke et al. (2007, pp. 87–89) provided a cogent discussion of the scientific state of mind, and of the importance of developing alternative explanations and testing your conclusions. In my view, this issue is just as important for qualitative proposals as for quantitative ones.

7. Preliminary Results

If you have already begun your study, this is where you can discuss what you have learned so far about the practicality of your methods or tentative answers to your research questions. This discussion is often valuable in justifying the feasibility of your study and clarifying your methods, particularly your data analysis strategies; see Regan-Smith’s proposal for an example of this.

8. Conclusion

This is where you pull together what you’ve said in the previous sections, remind your readers of the goals of the study and what it will contribute, and discuss its potential relevance and implications for the broader field(s) that it is situated in. This section should answer any “so what” questions that might arise in reading the proposal. It is normally fairly short, a page or two at most. Martha Regan-Smith’s proposal provides a particularly concise, one-paragraph conclusion (not even labeled as such) that nonetheless accomplishes these tasks. Elizabeth Riddle’s proposal doesn’t have such a conclusion, but it could have used one (my fault for not catching this).

9. References

This section should normally be limited to the references actually cited; unless you are directed otherwise, it should not be a bibliography of relevant literature.

10. Appendices

These may include any of the following:

- A timetable for the research
- Letters of introduction or permission
• Questionnaires, interview guides, or other instruments
• A list of possible interviewees
• A schedule of observations
• Descriptions of analysis techniques or software
• A matrix of relationships among questions, methods, data, and analysis strategies (see Figure 5.1)
• Examples of observation notes or interview transcripts from pilot studies or completed parts of the study

The appendixes can also contain detailed explanations of things (e.g., a particular data collection or analysis technique, or background information about your informants or setting) that would require too much space to include in the body of the proposal.

The structure that I present here was originally developed for proposals of about 5,000 words (roughly 20 double-spaced pages). Different universities and funding sources have differing length requirements, some shorter and some longer than this. However, even if your submitted proposal needs to be shorter than this, I still recommend writing an initial draft of about 20 pages, because this is a good test of how well you have worked out your design. One student, whose 10-page proposal was approved by his committee, later said,

I think it would have been better if I had done a more complete proposal. Even though I wasn’t sure what form my research was going to take, I still should have spent more time planning. Then I would have had a greater feeling of confidence that I knew where I was going. (Peters, 1992, p. 201)

Once you are confident of your design and how to present this, you can edit this draft down to the required length. On the other hand, if you need to write a longer proposal than this, I advise starting with a draft of about this length, to help you develop your argument.

I want to emphasize that your research design can’t be mechanically converted into a proposal. Your proposal is a document to communicate your design to someone else, and requires careful thinking, separate from the task of designing the research itself, about how best to accomplish this communication. To do this, you need take into account the particular audience for whom you are writing. Different universities, review boards, government agencies, and foundations all have their own perspectives and standards, and your design needs to be translated into the language and format required or expected by the people who will be reviewing the proposal. The structure I’ve presented here will usually be a good first approximation of what you need, but it may still require adjustment to meet the expectations of your reviewers. Discussion with your committee, or with program officers in the funding agency you are approaching, is extremely valuable in accomplishing this.

A useful step in moving from the generic proposal model presented here to a detailed proposal for your specific study is to prepare an outline of the argument of your proposal, to develop the sequence of points that you need to make to explain and justify your study. (Exercise 7.1 is an exercise in doing this.) This allows you to work specifically on the
logic of the proposal, free from the constraints of style and grammatical structure. (For more on how to do this, see Becker, 2007, Chapter 3.) As with concept maps, you can use this exercise in either of two ways—working to develop the logic from scratch and then converting this into a proposal, or taking a draft of your proposal, analyzing this to abstract the argument, and using this argument to revise the proposal. I've provided two examples of such outlines. Example 7.1 is my own outline of the argument of Martha Regan-Smith's proposal; it's fairly brief, but illustrates the basic idea. Example 7.2 is an outline that was actually written by Sherry Steeley in planning her dissertation proposal.

As with my generic model for a proposal structure, I caution you not to use these example outlines as templates for your argument. Every study needs a different argument to adequately justify the research, and in developing this argument, you will need to work primarily from your own thinking about your study, not borrow someone else's. In particular, as I discuss in more detail in my comments on this, Martha Regan-Smith's study is investigating a topic on which little prior work has been done; your argument (and proposal) will almost certainly need to say more about existing theory and research, as Elizabeth Riddle's does.

Example 7.1 The Argument of a Dissertation Proposal

Following is an outline of the argument of Martha Regan-Smith's proposal, which is presented in full in Appendix A. I have developed this outline from the proposal itself, so it's not a good example of the tentativeness that your outline will probably display initially, but my main purpose here is to illustrate one way to outline your argument. Some of the points in this outline are implicit in the proposal, rather than explicit; the extent to which parts of your argument need to be explicitly stated in your proposal depends on what you can assume that your reviewers will easily infer or take for granted. Similarly, the outline itself is only a sketch of what would be necessary to completely justify the study; even in a full proposal, you will not be able to address every possible question about your research, and will have to focus on those issues that you think are most important for your audience.

Argument for a Study of How Basic Science Teachers Help Medical Students Learn

1. We need to better understand how basic science teachers in medical school help students learn.
 a. There has been an explosion in the amount of information that needs to be transmitted, with no increase in the time available to teach this.
 b. Medical students' performance on the basic science parts of licensing exams has declined.
 c. These facts have led to student disillusionment and cynicism, and to faculty concern.
2. We know little about how basic science teachers help students learn.
 a. Studies of science teachers in other settings don't necessarily apply to medical schools.
 b. Most research on basic science teaching has been quantitative, and doesn't elucidate how such teaching helps students learn.
 c. No one has asked medical students what teachers do that helps them to learn.
 d. The research I've already done indicates that students can identify what teachers do that helps them learn.
 e. Thus, a qualitative study of basic science teaching, focusing on student perspectives, can make an important contribution.

3. For these reasons, I propose to study four exemplary basic science teachers to understand the following:
 a. What they do that helps students to learn
 b. How and why this is effective
 c. What motivates these teachers
 d. The relationship between the students' and teachers' perspectives

4. The setting and teachers selected are appropriate for this study.
 a. The medical school to be studied is typical, and my relationship with the school, teachers, and students will facilitate the study.
 b. The teachers selected are appropriate and diverse, and adding additional teachers would not contribute anything significant.

5. The methods I plan to use (participant observation and videotaping of lectures, student and teacher interviews, and documents) will provide the data I need to answer the research questions.
 a. Videotaping provides rich data on what happens in classes, and will be used to elicit reflection from the teachers.
 b. Interviews will be open ended, and will incorporate questions based on the observations.
 c. The selection of students is guided by theoretical sampling, rather than statistical representativeness, to best understand how the teacher helps students.

6. Analysis will generate answers to these questions.
 a. My analysis will be ongoing and inductive to identify emergent themes, patterns, and questions.
 b. I will use coding and matrices for comparison across interviews, and interview summaries to retain the context of the data.

7. The findings will be validated by the following:
 a. Triangulating methods
 b. Checking for alternative explanations and negative evidence

(Continued)
c. Discussing findings with teachers, students, and colleagues

d. Comparing findings with existing theory

e. These methods, and others described earlier, will enable me to deal with the major validity threats to my conclusions: bias in the selection of teachers and students, and self-report bias for both.

8. The study poses no serious ethical problems.

a. Teachers and students will be anonymous.

b. I have taken measures to minimize the possible effect of my authority.

9. Preliminary results support the practicability and value of the study.

Example 7.2 An Outline of a Dissertation Proposal Argument

Language, Culture, and Professional Identity: Cultural Productions in a Bilingual Career Ladder Training Program

Sherry L. Steeley, March 21, 2004

Argument Memo

An overview of research purposes, framework, questions and methodology follows, with a section on validity.

I. Research Purpose:

This study focuses on the professional identity—defined as ideas, beliefs, goals, and values—of bilingual paraeducators in a career ladder training program designed to address the need for qualified teachers of English for Speakers of Other Languages (ESOL) in a diversifying metropolitan area.

At the theoretical level:

- To extend existing research on career ladder programs which has focused primarily on rates of program completion by providing information on the impact of such programs on the individuals entering the teaching profession;
To explore whether the effects of the program constitute an effective means of overcoming the social reproduction that has limited broader participation by linguistic and cultural minority groups in the teaching profession;

To understand how paraeducators becoming teachers use their linguistic and cultural funds of knowledge, and how personal experience, views of the profession, and experiences in teacher training shape their eventual professional identity—notions explored in research on culturally and linguistically diverse teachers educated through traditional programs.

At the practice level:

- To provide rich data on the ideas of an underrepresented group in the teaching profession.
- To provide insights useful for educational policy-makers and schools of education planning for programs and student needs.

At the personal level:

- To understand more deeply the personal experiences of underrepresented groups in a program designed to facilitate their entry into a profession that remains predominantly white (Sleeter, 2001);
- To explore the impact of institutional practices and structures on the lives of individuals who will in turn impact upon the lives of students (e.g. Salinas, 2002; Sleeter, 2002; Zirkel, 2002);
- To further my personal commitment to understanding the function of social justice and equity-oriented programs and their outcomes in the lives of individuals.

II. Conceptual Framework:

This study is informed by two bodies of theory as well as extensive research review on culturally and linguistically diverse students, teachers, and schools.

Culturally and linguistically diverse students and teachers:

- Educators and administrators continue to struggle to adapt instruction and learning environments to the linguistic and cultural needs of diverse learners (e.g. Berman, Aburto, Nelson, Minicucci, & Burkart, 2000; Peña, 1997; Salinas, 2002; Zirkel, 2002).
- Research conducted with existing teachers shows that more than half feel unprepared to deal with linguistic and cultural diversity (Darling-Hammond & Youngs, 2002);
- Research conducted with culturally and linguistically diverse teachers (less than 15 percent of the teaching force) shows a commitment to social justice for students from
culturally and linguistically diverse backgrounds (Hood & Parker, 1994; Quiocho & Rios, 2000; Sleeter, 2002);

- Research shows that while majority culture teacher identity is based on the role models from their own educational experience in predominantly white, middle class schools, culturally and linguistically diverse teacher identity is rooted in their cultural views of the profession, their experience as culturally and linguistically diverse learners, and their teacher training and early in-service experience (Quiocho & Rios, 2000; Su, 1997).

- Research shows that some culturally and linguistically diverse teachers feel inhibited from using their cultural and linguistic skills in schools; others have reacted differently, determined to help their own students overcome educational obstacles to achieve success (Hood & Parker, 1994; Lima, 2000; McCollum, 1999; Moore, 2003; Nguyen-Lam, 2002; Shannon, 1995; Suarez, 2002; Tellez, 1999).

- Career ladder programs emerged in the early 1990s as researchers acknowledged the numerous barriers to culturally and linguistically diverse individuals interested in pursuing a teaching career (Genzuk, Lavandenz, & Krashen, 1994; Guyton, Saxton, & Wesche, 1996; Salinas, 2002; Yasin & Albert, 1999);

- These programs are designed to assist culturally and linguistically diverse paraeducators working in schools to overcome the academic, economic, and/or socio-cultural barriers that have heretofore prevented them from aspiring to or completing higher education and teacher licensure programs (Genzuk & Baca, 1998; Genzuk, Lavandenz, & Krashen, 1994; Gonzalez, 1997; Salinas, 2002; Yasin & Albert, 1999);

- Research on such programs to date has focused on outcomes measured by attrition rate and successful entry into fully-qualified teaching positions (Shen, 1998; Villegas & Clewell, 1998) and on the measures necessary to facilitate such transitions (Genzuk & Baca, 1998; Gonzalez, 1997; Steeley, 2003);

- A recent research review (Sleeter, 2002) noted the importance of examining the role of career ladder graduates to the teaching profession;

- Understanding their ideas about teaching, culture, language is a first step toward understanding that role.

Social Reproduction and Cultural Productions

- Social reproduction theory focuses on how individuals are shaped by societal forces that preserve a position of privilege for dominant classes through subtle practices that shape institutional culture, policies, creating barriers to individuals from subordinate groups (Borman, Fox, & Levinson, 2000; Bourdieu & Passeron, 1977/1970; Erikson, 1996; Levinson & Holland, 1996);

- This theory frames the experiences of many culturally and linguistically diverse teachers described in existing research (Levinson & Holland, 1996);
• Cultural production refers to the reaction of an individual or group to the structural barriers erected by the dominant culture; while many studies have focused on the negative reactions of such groups vis a vis aspirations, others have highlighted the positive reactions in the construction of new meanings or resistance that shapes a positive outcome, allowing for coexistence with the dominant culture while preserving individualized or group values (Cummins, 2000; Eriksen, 1992; Erikson, 1996; Levinson & Holland, 1996);

• Aurolyn Luykx's (1999) study of Aymara preservice teachers in a Bolivian "nationalist-oriented" normal school illustrates the degree of agency of such individuals, although it does not explore their ultimate classroom identity;

• Research conducted as case study or ethnographic research essentially depict a range of other cultural productions, providing an apt model for understanding the experience of culturally and linguistically diverse teachers and teacher-candidates in U.S. schools (Ernst-Slavit, 1997; Escamarilla, 1994; Lima, 2000; McCollum, 1999; Moore, 2003; Nguyen-Lam, 2002; Shannon, 1995; Suarez, 2002; Tellez, 1999).

Identity Theory:

• Proceeds from the acknowledgement that in a post-modern world, individuals are no longer members of easily labeled cultural groups, and that instead they draw from a wealth of symbolic and material resources to construct an identity in accordance with the historical context—broadly, the socioeconomic and cultural conditions—in which they live (Eisenhart, 2001);

• This identity construction is ongoing, reflecting the dynamic of an individual in perpetual negotiation with her surroundings (Eisenhart, 2001);

• Teacher identity and use of cultural and linguistic resources can impact upon student academic experiences (Bartolomé, 2000; Benjamin, 1997; Cassidy, 2002; Clark & Flores, 2001; Escamarilla, 1994; Galindo, 1996; Lima, 2000);

• Because culturally and linguistically diverse teachers draw from diverse spheres of ideas and experience to construct a professional identity, this theory provides an operational orientation to exploring the professional identity of culturally and linguistically diverse teachers in a career ladder program.

My Theory:

• The career ladder program will impact upon the development of professional identity as individuals already possessing educational insights gleaned from their experience as paraeducators develop a reflective stance toward the messages from their education;

• Educational and life experience could retain a strong influence, although it may be mediated by experiences in the career ladder program; (Continued)
(Continued)

- Individuals may be empowered to serve as advocates and change agents on behalf of their students;
- Messages from the current educational policy context with its emphasis on standardized testing could impact upon teacher beliefs;
- Understanding how the career ladder program impacts upon developing beliefs and practices will provide insight into the professional identity of bilingual bicultural teachers trained through the career ladder program;

III. Research Questions:

1. How do participants in a career ladder program characterize their professional identity, including their beliefs about teaching ELLs and their sense of agency in schools and in the lives of their students?

2. How did participating in the career ladder program modify their understanding of themselves as becoming educators?

IV. Methods:

Data Collection:

- In-depth interviewing with four career ladder participants, two graduates who are practicing teachers, two who are still enrolled in the program;
- Field notes on observation of situations recommended by participants related to participant identity (classroom, community);
- Artifacts from teacher education coursework and/or professional context provided by participants to depict their identity.

Data Analysis: the data will be analyzed in the following manner:

- Interviews will be transcribed, coded, and categorized, and analyzed on an ongoing basis as a source for further questions, the emergence of themes, and as an eventual source for organizing patterns of response across categories and individuals;
- Artifacts will serve as a further basis of discussion in interviews according to themes, providing a source to compare and contrast beliefs, practices, thinking, and identity;
- Field notes will further serve as a basis for discussion, coding, and categorizing, reflection, and member checking.
- Interview transcripts will be coded according to:
 - Theoretical categories emerging from the conceptual framework: cultural production, barriers, source of assistance in overcoming barriers;
Sources of messages impacting upon beliefs: educational experience, cultural views of teaching, teacher training, the career ladder program.

Substantive categories which emerge as themes in participant interviews: school leadership, standardized testing.

Direct beliefs: Statements of belief or ideas participants use to understand their experience and position.

- To verify findings and themes, I will undertake extensive member checking of my findings and transcripts on an ongoing basis.
- To further contrast and compare interview data with other sources, I will attempt to collect and inventory relevant artifacts on an ongoing basis throughout the study.
- To deepen the understanding of my data, I will discuss field observations extensively.

V. Validity

- To deal with "reactivity" I will emphasize that I support them as learners and teachers and am interested in learning more about their views and experiences;
- To deal with bias, I will exercise extensive reflection and reflexivity as I proceed through interviews, observation, and artifact collection, bringing to my own awareness.

Verification Techniques:

- Member-checks of interview transcripts, artifacts, and field notes;
- Actively seek discrepant evidence by using informed interviewing techniques, emphasizing discrepant evidence in member checks;
- Seeking informed input from colleagues and committee members while undertaking reflection and analysis of interview transcripts, artifacts, and field notes.

Generalizability:

- This study is not intended to be generalizable, although some themes may resonate in similar contexts.
- Findings are intended to provide rich description and insights for policy makers, practitioners in the fields of linguistic and cultural education and teacher education rather than to identify a generalizable phenomenon.

[The references were omitted because of their length]
Exercise 7.1 Developing a Proposal Argument

The purpose of this exercise is for you to outline the argument of your proposal, not its detailed content or structure. You want to present the main substantive points that you need to make about your study, and to organize these so there is a clear logic that leads to a justification for the study. These arguments do not have to be developed in the full form that they will have in the proposal itself, but they should provide the essence of the latter, and should form a coherent sequence.

If you are in the beginning stages of planning your proposal, the outline can be very hypothetical and tentative; the purpose of the exercise is for you to start working on developing your argument, not for you to commit yourself to anything. At this point, it's not important whether you have any evidence or citations to back up your claims; after you have developed an outline of your argument, you can then assess where the holes are in your logic and evidence, and what you need to do to fill them in. This is a come-as-you-are party; construct the best argument you can with your present knowledge.

You should address all of the issues listed, although not necessarily in the order presented—sometimes explaining your research relationships depends on knowing your methods or setting, and sometimes the reverse. Don't try to write well-developed prose at this stage; bulleted points will be easier to do and more useful for this exercise.

1. Research goals. What intellectual, practical, and personal goals will doing this study accomplish, or attempt to accomplish? What problem(s) will the study address, and why is it important to address this (if this isn't obvious)?

2. Conceptual framework. What are the most important theories, ideas, and knowledge (personal as well as research) that inform this study? How have these shaped the study? What is your conceptual framework for the study, and how does it use and incorporate these? What do we not know that your study will address?

3. Research questions. What do you want to learn by doing this study? How (if it isn't obvious) will answering these questions address the study's goals? How are the questions connected to your conceptual framework?

4. Research relationships. What sorts of research relationships do you plan to establish with the participants in your study or setting, or with those controlling access to your setting or data, and why? How will you go about this, and how will this be influenced by any existing relationships you have with them?

5. Site and participant selection. What setting(s) will you study, and/or what individuals will you include in your study? (If you haven't made these decisions yet, explain how you expect to make them, along with the criteria you plan to use.) What theoretical and practical considerations have influenced these choices? How are these choices connected to your research questions (if this isn't obvious)?
6. **Data collection.** How do you plan to collect your data, and what data will you collect? Why have you chosen these methods, rather than other possible alternatives? How will these data enable you to answer your research questions (if this isn’t obvious)?

7. **Data analysis.** What strategies and techniques will you use to make sense of your data? Why have you chosen these? Indicate how you will use these analyses to answer your research questions; don’t just give boilerplate descriptions of analysis strategies.

8. **Validity.** What do you see as the most important potential threats to the validity of your conclusions? What will you do to address these? What limitations on the generalizability of your results do you see?

Harry Wolcott (1990) provided a useful metaphor to keep in mind as you develop your proposal: “Some of the best advice I’ve ever seen for writers happened to be included with the directions I found for assembling a new wheelbarrow: *Make sure all parts are properly in place before tightening*” (p. 47). Like a wheelbarrow, your proposal not only needs to have all the required parts; it also has to work—to be put together so that it functions smoothly and conveys to others your research design and the justification for this. This requires attention to the connections between the different parts of the proposal (and your design), and to how well the proposal, as a written document, can be understood by your intended audience. As described previously, these are two aspects of what I call coherence. A coherent proposal depends on a coherent design, but it also needs its own coherence, to flow clearly from beginning to end without gaps, obscurities, confusing transitions, or red herrings. As I’ve emphasized, there isn’t one right way to do this; I’ve tried to give you the tools that will enable you to put together a way that works for you and your research.

NOTES

1. Some university departments and dissertation committees *do* want a comprehensive review of the literature on your topic, as a demonstration that you are familiar with prior work in this area. See my discussion of this issue in *A Model for Proposal Structure*, under Conceptual Framework.

2. This doesn’t mean that you should *conceal* your political views; these are an appropriate part of the discussion of your goals, and may be a possible validity threat that you want to address. However, the discussion should focus on how these views inform your design, rather than being political polemic or irrelevant self-display.

3. Locke et al. (2007, pp. 68–73) provide an excellent discussion of the purposes and construction of a literature review.
4. The term “methodology” is often used for this section of a proposal. Despite its prevalence, this is an inaccurate and pretentious usage, a good example of what Becker (2007) called classy writing. Methodology is the theory or analysis of methods, not what you actually do in a particular study. The *Publication Manual of the American Psychological Association* (2010, p. 29), a commonly used guide for both dissertations and research publications, uses the term “method” for this section of a manuscript.

5. For some suggestions on how to justify a qualitative study to a potentially ignorant or hostile audience, see Maxwell (1993).

Appendix A

A Proposal for a Study of Medical School Teaching

No single proposal can adequately represent the diversity of qualitative research designs and ways of communicating these. For this edition, I’ve included two proposals, to emphasize that there is no one right way to structure either a qualitative study or a proposal. Martha Regan-Smith’s proposal for her dissertation, a study of exemplary medical school teachers, provides a clear, straightforward, and very concise explanation and justification for the proposed study, and raises many of the key issues that most qualitative proposals will have to address. In my comments, which are set off and indented, I try to identify and clarify the connections between these issues and my model of research design, and to present alternative ways of handling these issues. The proposal appears here just as Martha submitted it, with only a few additions (marked by brackets) or corrections of typos or punctuation for greater clarity; the appendices have been omitted.

The most serious danger in presenting exemplary proposals such as these is that you might use one as a template for your own proposal, borrowing its structure and language and simply “filling in the blanks” with your study. This is a sure recipe for disaster. Your proposal needs to fit the study that you are proposing, and an argument that works well for one study may totally fail to justify a different study. Construct your proposal around your own design, not someone else’s.
HOW BASIC SCIENCE TEACHERS HELP MEDICAL STUDENTS LEARN

The Students' Perspective

Dissertation Proposal
Martha G. Regan-Smith
March 6, 1991
Harvard Graduate School of Education

ABSTRACT

Medical school consists of two years of basic science and two years of clinical training. The sciences taught in the first two years include Anatomy, Biochemistry, Physiology, Pathology, Microbiology, and Pharmacology. As a result of the biomedical information expansion which has occurred in the last eighty years with no increase in the time available to teach this information, the teaching of basic science has become content heavy. In addition, the teaching has become increasingly rapid paced as most schools over the past twenty years have decreased the number of hours spent in laboratories and demonstrations while increasing reliance on lecturing as the way to teach. Medical student performance on the basic science examinations used for licensure has decreased, and, as a result, medical school faculty feel medical student learning of basic science is less than desired.

As a member of medical school faculties for eighteen years, I want to improve medical student learning of basic science by improving the teaching of basic science in medical school. No qualitative studies of basic science teaching in medical school exist. What works for student learning and how it works is not known. In order to understand how teachers can help medical students learn basic science, I propose to do a qualitative study of four exceptional basic science teachers to answer the following research questions: How do these basic science teachers help medical students learn? What do these teachers do to help students learn? How and why do these techniques help students learn? What motivates the teachers to do what they do? Is what students feel teachers do to help them learn what teachers intend? How do student understandings of what helps them learn differ from teacher understandings?

Each of the four teachers studied teaches a different basic science at a typical private medical school in the northeastern United States. The school has a traditional curriculum in which the two years of basic science is taught predominantly using the lecture format. Each teacher is a winner of the student-selected "Best Teacher Award" and each teacher uses the lecture format for his teaching.

Participant observation of the teacher’s lectures and teacher and student interviews are the primary data sources. Classes, in addition, are audiotaped for transcription and
videotaped. Videotapes are analyzed as well as used as prompts for dialogue when shown to teacher or students. Interviews are tape-recorded, transcribed and coded. Analytic memos are written and coded for each class observation and interview. Matrices are constructed to identify themes and to check evolving concepts. Both teacher and student collaboration is obtained by getting their opinions of my analysis and conclusions. Each teacher’s teaching is analyzed separately followed by comparative analysis of all four teachers’ teaching. Generated theory will be compared to existing theory which is primarily based in other educational settings or on personal experience. The goal is to identify teaching techniques and behaviors that help students learn and to gain understanding of how and why these techniques help students learn. This knowledge about practice in context can be taught to teachers in faculty development workshops designed to teach teachers how to improve their teaching. By teaching teachers how to better help students learn, it is hoped improved student learning will result.

This abstract is a concise summary, not just of the components of the research design, but of the connections between these—the argument of the proposal. Standards and requirements for abstracts vary, and this one is relatively long. However, conveying the basic argument of your proposal should be a major goal of your abstract, regardless of the length.

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>164</td>
</tr>
<tr>
<td>Conceptual Framework</td>
<td>164</td>
</tr>
<tr>
<td>Existing Literature on Basic Science Teaching in Medical School</td>
<td>165</td>
</tr>
<tr>
<td>Personal Interest</td>
<td>167</td>
</tr>
<tr>
<td>Proposed Research</td>
<td>168</td>
</tr>
<tr>
<td>Research Goals</td>
<td>168</td>
</tr>
<tr>
<td>Research Questions</td>
<td>169</td>
</tr>
<tr>
<td>Research Site</td>
<td>169</td>
</tr>
<tr>
<td>Methods of Data Collection</td>
<td>170</td>
</tr>
<tr>
<td>Videotaping</td>
<td>170</td>
</tr>
<tr>
<td>Student Interviews</td>
<td>171</td>
</tr>
<tr>
<td>Teacher Interviews</td>
<td>172</td>
</tr>
<tr>
<td>Methods of Analysis</td>
<td>172</td>
</tr>
<tr>
<td>Single-Case Analysis</td>
<td>172</td>
</tr>
<tr>
<td>Cross-Case Analysis</td>
<td>173</td>
</tr>
<tr>
<td>Validity Issues</td>
<td>174</td>
</tr>
<tr>
<td>Ethical Issues</td>
<td>175</td>
</tr>
<tr>
<td>Preliminary Findings</td>
<td>176</td>
</tr>
<tr>
<td>Appendices</td>
<td>176</td>
</tr>
</tbody>
</table>
INTRODUCTION

Since the Flexner Report in 1910, the four-year medical school curriculum has comprised two years of teaching the sciences basic to medicine followed by two years of training in the clinical disciplines. The basic sciences include Anatomy, Microbiology, Biochemistry, Pharmacology, Pathology, and Physiology, and the clinical disciplines include Surgery, Medicine, Pediatrics, Psychiatry and Obstetrics/Gynecology. Because of the information explosion in biomedical science during the past eighty years, the basic science curriculum has become "overstuffed" (Eichna, 1980). Usually three to four sciences are taught simultaneously, using predominantly the lecture format. As a result, students are in class 25–33 hours per week throughout the first two years of medical school. This, combined with the student perception of ineffective teaching (Eichna, 1980; Jonas, 1978; Konner, 1987; Awbrey, 1985), has led to student disillusionment with science (Eichna, 1980) and student cynicism about the educational process (Petersdorf, 1987). In addition, the national failure rate on the basic science portion of the National Board of Medical Examiners examinations has risen over the past six years (NBME letter to Deans, Appendix A) without a demonstrable decrease in student undergraduate grade point averages or admission examination scores.

In an effort to improve the teaching of basic science in medical school, I want to study what teachers of basic science actually do to help medical students learn. I propose to conduct a qualitative study of four exceptional basic science teachers’ teaching, from the students’ perspective, to answer the question, “How do these teachers help medical students learn?” The goal is to identify teaching techniques and behaviors which help students learn, which can then be taught to teachers in faculty development workshops designed to teach teachers how to improve their teaching and hence better assist student learning.

In this brief introduction, Martha sets the stage for what follows by concisely presenting the practical problem that motivates the study and the historical context of this problem (first paragraph), and briefly stating the goals and nature of the proposed study (second paragraph). The abstract has already given some information about the problem and the study, and further details are left for later. Different studies will require different amounts of information to adequately orient the reader to the research problem and study.

Conceptual Framework

To increase medical student enthusiasm for and learning of basic science, several scholars have called for critical examination of the teaching of basic sciences (Bishop, 1984; Neame, 1984; Beaty, 1990). A small number of schools, such as McMaster and Harvard, have been able to replace lectures with small group tutorials during which students participate in problem-based learning by independently solving paper patient cases (Neufeld and Barrows, 1974; Schmidt, 1983). Most medical schools, however,
because of financial and faculty constraints, must continue to rely on lectures as a major method of teaching basic sciences. Therefore investigation of how the lecture method can be effective in assisting student learning is worthwhile.

This paragraph justifies studying the lecture method of teaching basic science. It works well here, but it could also have been included in the introduction.

Existing Literature on Basic Science Teaching in Medical School

Studies of science teaching in secondary or undergraduate schools do not necessarily apply to the medical school setting. The teaching of science through the use of lectures in medical school is unlike the teaching of science in any other educational setting. The rapid pace of medical school and the vast quantity of material needed to be learned by students with varying science backgrounds makes the teaching of science and the learning by the students unique. Effective teaching through the use of lectures in nonmedical school educational settings has been well described and studied (Katona, 1940; McKeachie, 1969; Hyman, 1974; Eble, 1976), but whether the teaching techniques recommended are appropriate in the medical school setting or whether other techniques are helpful is unknown. Qualitative study asking students what works for their learning is needed.

The medical education and health professions education literature on lecturing is limited. Some prescriptive works on how to give effective lectures (Miller, 1962; Bughman, 1973) are based on implicit theory derived from personal experience as students and as faculty (Cook, 1989). Others have been written by educators working in the medical school arena (Jason, 1982), but these are based on educational theory derived from educational settings other than medical school. Schwenk and Whitman (1987) prescribe effective lecturing techniques related to existing educational theory and relate these techniques to communication theory and negotiation theory inherent in effective doctor/patient relationships.

Quantitative studies of lecturing in medical school, usually utilizing student ratings of lecturing techniques, depend on the researchers’ prior understanding and assumptions about what helps students learn. Because no qualitative studies of medical student learning of basic science exist, this understanding is based on theory derived from study of or experience with nonmedical school settings. The few quantitative studies in the literature looking at basic science teaching in medical school (Naftulin, 1973; Ware, 1975; Mendez, 1984; Russell, 1984) are limited in scope and contribute little to the research question, “How do basic science teachers help medical students learn?”

Naftulin (1973), looking at teaching delivered in a “seductive charismatic manner,” showed that students could give high ratings of such teaching, however, the audience’s perception of learning was not included in the study. In response, Ware (1975) concluded that “seductive, charismatic lecturers” assist student learning by showing that students attending lectures with high seduction (characterized by enthusiasm, humor, friendliness, expressiveness, charisma, personality) and low content have similar examination scores as students attending low seduction high content lectures. How
these teacher characteristics contribute to student learning of content was not addressed. Mendez (1984) surveyed year I and II medical students for the factors contributing to lecture attendance and found that students attend lectures which they perceive to have clearly defined objectives and which covered material tested on the final examination. How the objectives help student learning and which lecture techniques helped learning were not investigated. Russell (1984) looked at medical student retention of basic material immediately after and fifteen days following lectures with varying amounts of content and found that increasing information density of lectures reduced retention of the basic information. The reasons for this effect were not a part of the study. Slotnick (1975) and Irby (1976), using quantitative methods, demonstrated that teaching criteria presumed by the researchers to be important for student learning were in fact important to students for their learning. Slotnick (1975) showed that faculty-student rapport, student work required outside of class, pace of class, overall workload, understandability of lecture material, lecturing activities (e.g. summarizes material, concise explanation, organization of material in a logical way), student ability to organize material, and professor knowledge of students’ knowledge level are interrelated rather than univariate factors in effective teaching. How these factors affect student learning and why was not a part of the study. Irby (1976) showed that teachers could improve their teaching when given immediate feedback about student ratings of their teaching. The rating variables were derived from education literature and whether the list of teaching techniques rated by the students included all the techniques helpful for student learning could not be determined from the study.

No one has asked medical students what teachers do to help them learn. Existing research has asked students to rate particular teaching techniques or to state whether a technique works or not. These studies depend on the researchers’ understanding of what works for student learning. What works to help students learn science in other educational settings may not work in medical school. Quite possibly basic science teachers in medical school have happened upon or developed teaching techniques that are unique to medical school or are unintentionally assisting learning in ways they do not appreciate. Qualitative study is needed to generate a theory of effective nonclinical teaching in medical school.

This section of the proposal argues that we know very little about how basic science teachers in medical school help their students learn. This point is important in justifying a qualitative study of this phenomenon. As a result, however, the proposal says little about what will be the focus of the conceptual framework section of most proposals: existing theory about, and research on, the phenomenon studied. Martha briefly reviews several theories about what constitutes effective teaching in medical school lectures, but her main point is that these studies address neither how such teaching methods work nor the students’ perspective. If your study is of a topic for which there exists a substantial literature of theory and research, your conceptual framework section will need to address this literature, as well as your experience (which Martha discusses in the next section) and pilot research (which she deals with both in the next section and later, in the preliminary findings section).
Personal Interest

I am a physician, an internist and rheumatologist. I was a chemistry major in college, and, prior to this study, I had not participated in a science class since I was a medical student 21 years ago. I have taught how to diagnose adult disease in clinical medicine for 18 years. Approximately six years ago I realized I was also trying to teach both critical thinking skills and the communication skills needed to enable others to understand the reasoning behind a diagnosis. I also realized that I did not know much about critical thinking or communication, let alone how to effectively teach these skills. In 1987 I entered the [Harvard Graduate School of Education] master’s program to learn about these skills and how they can be taught. I felt these skills should be a part of a physician’s education, and I quickly learned that effective learning of these skills necessitated teaching of these skills throughout medical school, not just in clinical medicine courses.

In 1988, for a course on perspectives of teaching, I was required to study a teacher, classroom or school. I chose to study a teacher. As the Assistant Dean for Clinical Education, whose responsibility is to oversee all clinical teaching, I anticipated I could more easily gain entry into a teacher’s classroom if I chose to study a basic science teacher rather than a clinical teacher. In addition, I chose to study a winner of the student awarded “Best Teacher Award.” I reasoned that I could learn more about teaching from a winner of such an accolade than a nonwinner, and that a winner would be more likely (i.e. have more confidence) to allow my presence in his classroom than a nonwinner.

I expected the teacher to be skillful; however, I was awed by the extent of his skill as a teacher. Equally surprising was how articulate the students were at describing how he helped them learn. Although I appreciated how he helped me learn in the classroom, I needed student input to appreciate all the aspects of what he did and why it worked for them. Curiosity about how other teachers help medical students learn basic science, and my desire to improve medical education, led to my application in 1988 to the doctoral program with plans to pursue study of how basic science teachers help students learn. By finding out, from the students’ perspective, what works to help students learn, I want to discover how teachers can help their students learn and why. Two more teachers have been studied as part of methods courses: the most recent was written up as my qualifying paper entitled “Relevance in Teaching.” Each teacher has exemplified all the teaching characteristics that I identified as helping students learn; however, each teacher has best exemplified a different teaching characteristic. The information gleaned from these teacher studies can be used in faculty development workshops designed to teach teachers how to better help their students learn.

In this section, Martha describes how the study originated, presenting her personal goals and how these connect to the practical and theoretical goals described in the introduction. She also describes her background as the “research instrument” of the study. In doing these, she also begins to build her justification for the selection of exemplary teachers as the focus of the study, and for using students as a major source of data.
Proposed Research

Research Goals

I want to learn what teachers do to help students learn. The teaching techniques gleaned from teachers in practice which I identify as helping students learn will be useful for other teachers to improve their teaching. Quantitative researchers define the problems of practice in their own terms, not the terms of the practitioners, and tend to generate knowledge that is not useful to the practitioner (Bolster, 1983). Quantitative research often does not cause change in practice, whereas qualitative research, which strives to understand the meaning of action to the participants, can offer improvement of arguments for practice and hence can have greater effect on practice (Fenstermacher, 1986). Knowledge generated by quantitative educational research is often not useful to practitioners who are swayed more by practical arguments, experience and faith (Buchmann, 1984). To improve practice, educational research needs to emphasize the context within which the activities studied occur and the meanings of activities studied for the participants. Qualitative research methods meet these needs (Abrahamson, 1984).

The unique teaching/learning situation in the first two years of medical school merits a qualitative research design which (1) takes into account the contextual elements which makes medical education different from other science education settings and (2) allows for inductive hypothesis generation. What works for basic science lectures is unknown. What helps medical students learn may well be different than what works for students of science in other settings. There is a need for students to define and explain what works. Understanding how particular methods work will require understanding of the context. Using qualitative research methods to study teachers and their students in basic science lecture-format classrooms, I intend to learn from the students and their teachers how basic science teachers help students learn.

For my dissertation I propose to study four basic science teachers. Recognizing that students can be valid, reliable, and useful evaluators of teaching (Costin, 1971; Rippey, 1975; Palchik, 1988; Irby, 1977), I decided to continue to study student selected “Best Teacher Award” winners. I will analyze each teacher’s teaching individually, and then comparatively analyze the data collected from all four teacher studies. The theory generated about basic science teaching will be compared to existing effective teaching theory generated from other educational settings.

In this section, Martha reviews the main question and goals of the study, and uses these to justify a qualitative study. In the process, she brings in two additional pieces of the conceptual framework, which relate particularly to methods: the relatively greater impact of qualitative research on practice, and the validity of student ratings of teaching. This discussion could just as easily have been included in the conceptual framework section.
Research Questions

The research questions to be answered are: How do these basic science teachers help their students learn? What do these teachers do to help students learn? How and why do these techniques help students learn? What motivates teachers to do what they do? Is what students feel teachers do to help them learn what teachers intend? How do student understandings of what helps them learn differ from teacher understandings?

In this section, Martha expands on the single, main question she stated in the introduction, specifying the range of questions and subquestions that she will address. In many proposals, more explanation or justification of the questions would be desirable, but because of the clear rationale that Martha provides for these questions in previous sections, it seems unnecessary here. For clarity, it is often better to number your research questions, and to indicate which of these are subquestions of particular main questions.

Research Site

I chose to study teachers at a private Northeastern medical school where I have been on the faculty for ten years (I was a winner of the “Best Teacher Award” for clinical teaching in 1987) and I have been the Assistant Dean for Clinical Education for four years. The school is a typical private medical school of slightly less than average student body size. It has a traditional curriculum with two years of basic science followed by two years of clinical experience.

The students are fifty to sixty-five per cent males and thirty-five to fifty per cent females and come from over 50 different public and private schools throughout the United States. Passage of the National Board of Medical Examiners examinations is not required for promotion or graduation; however, most students take the examinations to obtain licensure to practice. The school’s matriculating students’ admission grade point averages and admission examination scores are near or slightly above the national mean. During the past five years, the school’s students’ failure rate on the basic science portion of the National Board of Medical Examiners examinations has been at or near the national failure rate and has risen as the national failure rate has. The only differentiating features of this school from other U.S. medical schools are its rural location and its close, friendly faculty/student rapport.

I have professional relationships of considerable mutual respect with the teachers I have chosen to study. All have worked with me as colleagues on Dean’s Advisory, Curriculum and/or Student Performance Committees. We see each other as education advocates in an environment which does not reward education program development or teaching achievement. The four teachers chosen from the “Best Teacher” list to be studied each teach at least twenty hours of different basic science discipline courses (Appendix B) and primarily use the lecture format. The basic science teacher winners
that will not be studied either teach the same discipline as another studied teacher or teach using a non-lecture method (see Appendix B).

Three teacher observations and interviews have been completed. The teacher remaining to be studied is to be included because he has passion for his subject, which is a recognized dimension of effective teaching (Eble, 1976). Students participating in my previous studies of medical school basic science teaching have recommended study of this professor, who teaches Pathology, because they perceive him as best exemplifying love of subject, which they feel is very important for their learning.

In this section, Martha accomplishes two purposes. First, she describes the setting of her proposed study (supporting the generalizability of her results) and the kind of study she plans to do, and further justifies her choice of teachers. Second, she explains some aspects of her research relationship with the teachers she will be studying. The proposal would have been stronger if she had said more about this, and about her relationship with the students.

Methods of Data Collection

Qualitative research methods were selected for this study both because I did not know a priori what I would find, and because I wanted to generate data rich in detail and embedded in context. Classroom participant observation, student interviews, and teacher interviews are the primary sources [methods] of data collection. In addition, course outlines, syllabi, quizzes, examinations and examination results, paper cases, slides, and other handouts are collected as data. Student evaluations of the course and of the teacher’s teaching are also used if available.

For all case studies I attend all possible scheduled lectures given by the teacher throughout a four month course. This will be no less than 2/3’s of the teacher’s teaching. Two to four lectures are audiotaped to record exactly what was said by the teacher and students in the classroom and later transcribed. As discussed below I videotape teachers teaching and interview both students and teachers. I take field notes while in class unless I am videotaping, and write analytic memos and contact summaries (Miles and Huberman, 1984) following each class as well as each interview.

These two paragraphs provide an overview of the methods section as a whole, and explain the selection strategy for her observations. The selection of students is dealt with later, in the student interviews section.

Videotaping

Videotaping, which I first used with the third teacher I observed, produces a rich source of data about what is going on in the classroom. It allows me to see things I could not see otherwise. I will have the opportunity to review classroom action and observe and isolate individual parts of what is going on. Several of the videotapes will also be used to facilitate the teacher discussing his own teaching in depth. By showing
the teacher the tapes of his teaching, I can ask about individual components of his teaching in context. In addition, the tapes will be used to stimulate student dialogue. They will be shown to students to facilitate their explaining the effect of what the teacher does in the classroom to help their learning. Since videotaping was not used to study all four teachers, a comparative analysis cannot be done including all teachers.

Note that videotaping serves two different purposes in this study: ensuring the descriptive validity of her observations, and stimulating recall and reflection as a component of some of the interviews with teachers and students. Videotaping only two of the four teachers would be a serious flaw if the primary purpose of this study were to compare the teachers, but the purpose is to obtain an in-depth understanding of each of the four teachers, and it would be pointless to forego the advantages of videotaping the last two teachers simply to maintain a superficial consistency of method. In a proposal that will be reviewed by readers not familiar with qualitative research, such a decision might need more explicit justification.

Student Interviews

The student interviews begin with an open-ended question such as „What stands out for you?” or „What did you notice?” Subsequent questions are conversational in an attempt to get the interviewee to discuss further something he/she mentioned in an answer. For the first several interviews, the only other preconceived question is „What does the teacher do that helps you learn?” As I observe more classes, questions arise for which I need answers in order to confirm my observation conclusions and to understand what is going on in the classroom, and these are added. Eventually a set of questions (Appendix C) emerges from the evolving data; I ask these questions of all remaining interviewees in addition to the two original set questions.

Out of a class of 84 students, ten to twenty formal student interviews, lasting 20–45 minutes each, are conducted for each teacher study. As many of the student interviews as time will allow are done after the final examination to minimize student fear that what they say will affect their grade. The interviews occur in my office, and are audiorecorded and later transcribed. Each interview is preceded by my stating that I am studying what teachers do in the classroom to help students learn, and all interviews are kept anonymous. Analytic memos and contact summary sheets discussing setting, student attitude and demeanor, and content are written for each interview.

The students I interview are selected to contribute student opinion and characteristics that seem important to the context of the study. In the three concluded studies and planned for the fourth study, I seek samples of the student population guided by my emerging theory using theoretical sampling (Strauss, 1987). I do not attempt to get an empirically „representative” sample. As I learn about and make sense of the events in the classroom and its meaning to the participants, I look for negative data as well as positive data for my emerging theory. I determine how many interviews I will do by doing interviews until I find that I am discovering nothing new. I purposely interview
students known to be outspoken and critical to be sure I hear negative comments, as well as students known to be outsiders (loners not a member of one of the cliques in the class) to be sure to get different opinions rather than just "the party line." By asking interviewees to tell me who in the class has opinions about class and the teacher different from their own, I find which students are likely to provide contrasting perspectives. In addition, I try to interview students who do not regularly attend class in an effort to understand what informs their decisions to attend or not to attend class.

In this section, Martha presents and justifies both her selection strategy for the student interviews and how she will conduct these. Again, the lack of uniformity of interview questions for all students would be a flaw if the purpose of the study were to compare student responses, but it is not. The number of student interviews could have received more explicit justification, but most readers would feel that this is a more than adequate number. Further justification for her selection decisions is provided in her discussion of validity, and these decisions are supported by her preliminary results.

Teacher Interviews

For all four studies, the teacher is interviewed formally three to six times, and all interviews are audiotaped and transcribed. The interviews occur throughout the course as well as after the course if appropriate. In general, the interview questions are about issues about which I become curious as an observer in class or as the result of student input. I pursue issues raised by the teacher, and ask preconceived questions only if the teacher does not spontaneously address an issue of interest to me.

Formal teacher interviews last at least 30–55 minutes. For two of the teachers, I will use a class videotape as "text for dialogue" about the teacher's teaching for at least one interview. This yields more specific information about the teacher's play-by-play reasoning and strategy than interviews without videotapes, which tend to yield more abstract general teaching strategies and attitudes. Data gathered is analyzed along with the class observations in daily analytic memos and contact sheet summaries.

Because Martha had already collected much of her data when she wrote this proposal, she has a dilemma with what tense to use. Her decision to use mostly present tense seems to be the best choice; this could be misleading, but she has clearly explained earlier that she has already completed data collection for three of the four teachers. For dissertation proposals, I advise you to be completely candid about how much of your data you have already collected, unless you receive authoritative advice to the contrary.

Methods of Analysis

Single-Case Analysis

Analysis of collected data is ongoing. Analysis of transcribed interviews and classes is coded during data collection as soon as transcriptions are available. Codes are inductively
generated using the “grounded” approach of Glaser (1965) and emerge from the participants’ descriptions of the teacher’s teaching. In addition, coding is done using codes from a “start list” (Miles and Huberman, 1984) generated from previous studies. All interviews and classroom transcripts are reread specifically for codes which emerge from later interviews. As patterns or themes are identified, dimensionalization (Strauss and Corbin, 1990) is carried out accompanied by recoding for the developed dimensions or properties of a given theme.

Matrices are constructed from the data and are used to identify patterns, comparisons, trends, and paradoxes. Further questions and possible routes of inquiry are devised to answer the questions which emerge from matrices. Periodic review of all the collected data as well as all the analytic memos followed by summary construction and formulation of yet to be answered questions is done every two or three weeks throughout the study. In addition, I meet weekly with an education colleague, knowledgeable about qualitative research and the research site, to summarize the status of the research and to discuss emerging themes, concepts and explanations.

In the final phase of data analysis each interview is reread with the objective of writing individual short interview summaries. These summaries allow me to see threads that run through interviews and thereby maintain the context for the quotes which are lifted out of the interviews and used as examples in writing up the research. Using Microsoft Word (Apple, 1988), I then cut and paste quotes from all the interviews creating new separate documents for each code that had emerged from analysis of the interviews. This compilation of quotes for each code is used to appreciate trends, contrasts, and similarities. Matrices are constructed to check the validity of themes which emerge. Finally the data is reviewed to pair up student perspectives with teacher perspectives of the same phenomenon to compare and contrast perspectives as well as to look at whether what the teacher intends is, in fact, what the students perceive as happening.

Validation of data is achieved by triangulation (Denzin, 1970) of methods by comparing student perspectives, teacher perspective, and participant observer perspective of events in the classroom. Theoretical validation is achieved by regular presentation and discussion of emerging conclusions with medical school colleagues familiar with the setting, students and teachers. Further validation is achieved by discussing my analyses and conclusions with the teacher and with students.

Cross-Case Analysis

Once I develop an understanding about how the fourth teacher helps his students learn, I will begin cross-case analysis. The first step will be construction of a conceptual framework (Miles and Huberman, 1984) containing the dominant themes of how these four teachers help students learn. Each theme will be dimensionalized (Strauss and Corbin, 1990) or broken into factors and graphically displayed illustrating the relationships between them.

Patterns and themes will be sought by construction of cross-case displays and matrices. Plausible explanations and metaphors will emerge as the variables are related, split and factored (Miles and Huberman, 1984). The goal will be to build a logical chain of
evidence (Scriven, 1974) and to construct a theoretically and conceptually coherent theory by checking for rival explanations and looking for negative evidence. In order to check for theory validation informants will be asked for feedback on generated theory after data collection is completed.

Martha's description of her analysis strategies is detailed and comprehensive, but rather abstract and boilerplate, and doesn't give a good sense of the actual methods and coding categories she'll use; examples would be helpful here. This weakness is remedied by her discussion of preliminary findings, below, which provides detailed, concrete examples of the content of her analysis. Her discussion of evidence, rival explanations, and feedback also paves the way for the next section, on validity. In this section, she tends to slide into impersonal, passive-voice language, which seems incongruent with the mostly first-person, active-voice language of previous sections.

Validity Issues

1. Teacher selection: After the fourth teacher study, I will have studied the award winners from four different discipline courses who use the lecture method (Appendix B). I will stop at four teachers, unless another important teaching characteristic is identified that I have not already found. Because the study school has no features which make it different from other U.S. medical schools with a traditional curriculum of two years of basic science and two years of clinical experience, I find no reason to study teachers elsewhere. Most teachers of basic science in most schools are male, so I found no validity threat to my study by the teachers being male. This is really an argument for the generalizability of her results, not their validity.

2. Student selection: Did I interview enough students? Did I bias the data by who I interviewed? I intentionally try to interview students who have different perspectives and opinions of the teacher's teaching. I interview students who are: (1) known to be outspokenly critical of teaching, (2) from all quartiles of the class, (3) from a variety of career choices, (4) whom I know and whom I barely know, (5) who are referred to me by classmates as feeling differently about the class and teacher, (6) who participate in the typical camaraderie of the class and those who do not, and (7) who attend most every class and those who attend only a few. In essence, I try to seek out students who do not feel the teacher helps them learn as well as those who do. Thereby I try to get both negative and positive student input. I stop interviewing when I begin to hear the same things repeated and no new information. This paragraph deals with some plausible threats to the validity of her results. The selection strategy described here is an example of purposeful selection; the decision on when to stop interviewing is based on what Strauss (1987) called "theoretical saturation."
3. How do I know what students say is true and not just what I want to hear (i.e. that the teacher helped them learn when he did not)? To make students comfortable being honest with me I assure the students anonymity and interview them in a location distant from the classroom. As often as possible I postpone student interviews until after student grades have been awarded. I also attempt to interview students who are scheduled to finish their third and fourth years at another medical school, thereby eliminating any power I may have as Dean for Clinical Education over them. In the three completed studies, students have not held back from criticizing the teachers nor sharing with me their negative feelings and opinions of the teachers' teaching. I use my presence in the classroom as a learner trying to understand new subjects (e.g. the molecular biology of viruses) to substantiate whether a teacher truly helps students learn. If the teacher helps me learn and the students said he helps them and they pass the course, I believe them. I ask students to give examples of all teaching characteristics they claim help them learn and then I substantiate student examples by being present in class. Collaboration with students (both those in the study and those who were not) by discussing my observations and my conclusions also helps increase my confidence in the validity of my work.

This paragraph addresses her relationship with the students, which has ethical as well as validity implications, and argues that her relationship to them as Dean is not a validity threat to her conclusions. Someone who didn't know Martha and her reputation among these students might not find this argument completely convincing, but I'm not sure what else she could say. The most persuasive point, for me, is that the students she's interviewed have been critical of their teachers.

4. How do I know what the teacher says he does is true? I substantiate all teacher claims by participant observation and through student interviews. Teacher beliefs and stated reasons for behavior are accepted as true unless I encounter discrepant evidence.

Here, Martha basically relies on triangulation to deal with the validity threat of self-report bias in the teacher interviews. She could also have used the argument she made in discussing the student interviews: that, having already studied three of the teachers, she knows that the observations and student interviews corroborate the teachers' reports.

This section as a whole is organized by particular validity threats—how she might be wrong. In discussing these threats, Martha draws on information previously presented in the methods section, but she reorganizes this information so that it is clear how the data obtained through these methods will help her to deal with these threats.

Ethical Issues

Could my research harm the students or teachers? The teachers risk my finding out that they are not as good a teacher as their award recipience would merit. Even though I do not oversee the basic science part of the curriculum, my administrative colleagues do; and I am a member of the Curriculum Committee. To minimize this fear of risk, each
teacher is assured that no one other than specified study school education colleagues with whom I discuss results and conclusions (and my thesis readers) will know of the results of my research unless the teacher gives me permission to do otherwise. I can not eliminate this risk for the teachers.

No harm from teachers can come to the students who participate because the students' identities are kept secret. I can not eliminate the risk that I as the Dean, who writes the student's letter of recommendation for residency after graduation, will form opinions about them as a result of my interview. Those students concerned about such a risk can easily avoid participation. I am aware of no one refusing to participate when asked, hence I do not think student avoidance of participation poses a significant validity threat to my research.

This section could be placed either before or after the validity section. One point that could have been made explicitly here is that these teachers, as award winners, have less to fear from examination of their teaching than most teachers. Martha could also have dealt more convincingly with the ethical issue of risk to the students. Ultimately, her argument depends on her integrity. The point at the end, about validity, would fit better in the previous section.

Preliminary Findings

To date, preliminary analysis of the data has enabled me to identify a number of teaching characteristics which help students learn: clarity, relevance, knowledge of students' understanding, teaching to different learning styles, and passion for the subject. Each of the three teachers studied so far has been found to best exemplify different teaching characteristics even though the characteristic was found in all the other teachers' teaching. In other words, the characteristics identified that help medical students learn basic science are practiced by all the teachers studied but each teacher is a "master" at one or two different characteristics.

The first teacher teaches heart physiology, anatomy and clinical disease to Year II students as a part of the Scientific Basis of Medicine course. The students felt that his lecture style was "like a conversation" with them; the students felt he understood what they knew and what they did not. In addition, this teacher addressed multiple student learning styles by presenting the course material (e.g. coronary artery disease) in seven different ways (i.e. lecture, reading assignments with clear stated objectives, computer interactive patient cases, student participation in demonstrations, small group discussions, problem solving of paper cases, and student presentations of current articles to small groups).

The second teacher teaches the virology section of the Microbiology course in Year I. The students and the teacher felt that the most important feature of his teaching was clarity. The students perceived him to achieve clarity by (1) limiting the material needed to learn, (2) explicitly defining the material the students need and do not need to know, (3) specifying the meaning of his words, (4) presenting concepts moving from the simple
to the complex in a logical progression, (5) including stories about patients, epidemiological problems or medical history to explain concepts, (6) asking the class questions critical to understanding the concepts, and (7) repetition of key concepts and facts. He checks on his clarity by giving weekly quizzes and spending extra time in class to explain any quiz questions missed by a significant number of students. The quizzes promote clarity for the students because they additionally give the students feedback on what they know and do not know as well as force them to learn the material weekly and keep up with learning the material rather than cramming for the final examination.

The third teacher teaches pharmacology and best exemplifies the use of relevance in teaching. He uses relevance in his classroom teaching by structuring each lecture around either a presentation of a patient case of his own or a patient case volunteered by a student. In addition, each week he provides students with paper case problems to solve individually thereby letting students simulate practice as physicians. Relevance is also achieved by having students teach students how to solve the case problems. The ensuing class discussion allows students (and the teacher) to learn and discuss student understanding of the pharmacologic principles. The use of the Socratic method by this teacher as cases are discussed in class gives the students opportunity to privately reflect on their own similar experiences with patients. Relevance is also achieved by students privately conversing during class, relating to a neighbor what they are learning in class to cases they have seen, and sharing the experience with the classmate.

Previously studied teachers were not aware of all they did in the classroom to help students learn. Often a teacher is unable to fully appreciate how he helps students learn without my feedback. From the fourth teacher I expect to learn how a teacher’s passion for or love of subject helps students learn. I have heard the fourth teacher speak and he is mesmerizing. His charismatic style of presentation captures the audience’s attention and, I suppose, it helps them remember what he says. He may also contribute to their learning by motivating them to learn on their own.

I expect the comparative analysis to reveal that the dimensions of each of the individual teacher’s teaching characteristics overlap (e.g., anecdotes used to achieve clarity also achieve relevance). Ongoing analysis of my first three case studies reveals that students feel that student-involved teaching, such as students teaching students, is particularly useful for their learning because it achieves clarity, relevance, a form of student/teacher conversation, and addresses student learning styles.

This discussion of preliminary findings serves several purposes. First, it supports Martha’s argument that the methods she proposes are workable and will allow her to generate interesting and valid answers to her questions. Second, it fleshes out her rather abstract and general discussion of data analysis, clarifying how she is coding her data and integrating themes within each case, and suggesting issues that the cross-case analysis will focus on.
In summary, by using qualitative research methods to study basic science teachers who primarily use the lecture format to teach, I intend to find how these teachers help medical students learn. The theory generated will be compared to existing theory on effective teaching using lectures in other educational settings. This theory will be used to develop faculty workshops to teach teachers how to teach. The ultimate goal of improved basic science teaching in medical school is to improve medical student enthusiasm for, and learning of, the sciences basic to medicine.

This final paragraph sums up the study by briefly reviewing, in the reverse order from their presentation in the proposal, four components of the design: the methods, the research question, the theoretical framework, and the goals of the study. In doing this, it clearly shows the connections between these components, and links the proposed research to the goals with which the proposal began. However, this is pretty terse for a conclusions section; most proposals will need to say more to summarize the proposal and present the implications of the study.
Appendix B

A Proposal for a Study of Online Learning by Teachers

This is a second dissertation proposal, similar in organization to the first but with rather
different content. Unlike Regan-Smith’s proposal, it follows the common three-chapter
format, based on a five-chapter dissertation model, that I described in Chapter 7 (with
caveats). If your department or committee requires this format, Riddle’s proposal illus-
trates how to adapt my design structure to this. However, qualitative dissertation pro-
posals, and dissertations, often don’t follow this model; my own dissertation (Maxwell,
1986) had 10 chapters (an introduction, three literature review chapters on different
relevant issues, a setting and methods chapter, four results chapters, and a conclusion).
For this proposal, I have included three of Riddle’s appendices, since they are helpful
in clarifying how she actually planned to conduct the research.
Dissertation Proposal

Voluntary Participation and Online Learning

A Research Study Investigating Why K–12 Teachers Participate in Informal Online Learning and How It Influences Their Professional Development

Elizabeth Riddle Hoover
George Mason University
September 3, 2002
Contents

CHAPTER 1: INTRODUCTION
Topic and Purposes of this Study

CHAPTER 2: CONCEPTUAL FRAMEWORK
My Experiential Knowledge
The Need for New Forms of Professional Development
Social Learning
Situated Learning
Communities in Teacher Professional Development
New Electronic Tools Can Support Professional Development
Online Learning Communities
Research Questions

CHAPTER 3: METHODS
Research Site
Data Collection
Data Analysis
Validity
Timeline of Procedures

References
Appendices
APPENDIX A—Project Description/Advertisement
APPENDIX B—Informed Consent Letter
APPENDIX C—Survey (omitted)
APPENDIX D—Interview Guide
Educators desperately need alternative methods of distributing and receiving professional development. Research reveals that "good professional development" should be designed around teacher interest, connected to teacher's current knowledge, and supportive and nurturing of teachers' intellectual capacity (Corcoran, 1995; Little, 1993). In other words, professional development should be learner-centered. However, providing "good professional development" for teachers is extremely challenging for local school districts. Teacher interest, knowledge, and intellectual capacity vary widely within and among schools. Offering appropriate professional development requires a large investment in time and money. This type of investment is often neither a priority nor a possibility. Therefore, despite research, school districts typically offer professional development opportunities that are irrelevant and uninteresting for teachers. Professional development is packaged in one-day workshops scattered throughout the year on isolated, generic topics. As a result, teachers often seek out their own professional development at local universities, summer workshops, and increasingly on the Internet.

Since the emergence of the Internet, there has been a proliferation of resources offered to teachers through websites, discussion boards, and listserves. According to Zhao and Rop (2001), the underlying belief in the development of such resources is that they provide a solution to problems of teacher isolation and that they have the potential to individualize teacher professional development. They also identify three major purposes these resources fall under: sharing information, fostering professional development, or creating communities. These claims have not been rigorously researched (Zhao and Rop, 2001).

Topic and Purposes of this Study

Research that identifies reasons for voluntary participation in teacher online learning is necessary. This research can contribute to the creation of online learning opportunities that provide professional development that meets the needs of teachers. School districts could offer a wider variety of learning opportunities by merging with other organizations in the "virtual world". Online learning opportunities can overcome the current challenges of traditional professional development.

For my dissertation, I will explore how teachers are accessing and enhancing their professional development through participation in an online environment. Specifically, I am interested in teacher participation that is independent of online coursework or any other credit. I will study why K–12 teachers participate voluntarily, how their participation is sustained, how they believe their participation impacts their professional development, and if their participation fosters "communities of practice" as defined in the literature on professional development.

It is important to K–12 schools and universities to understand the reasons behind voluntary online participation. This knowledge can help districts and universities make...
online learning more interesting for teachers and students like myself. Additionally, if teachers’ experiences in voluntary online learning reflect the characteristics of good professional development, these environments may provide school districts with an alternative medium for distributing professional development.

CHAPTER 2: CONCEPTUAL FRAMEWORK

My Experiential Knowledge

My interest in the ways technology can provide and assist teachers with their professional development started in fall of 1999 when I was in EDIT 895: Leadership Issues in Educational Technology. Dr. Dede asked us to find and explore a “knowledge network” that used technology as its medium. I chose to write a paper on Teachers.net and how it provides learning environments for professional development. I specifically looked at how a group of teachers involved in a balanced literacy program, called 4Blocks, were using Teachers.net to share information, reflect upon their experiences, support one another and advocate the program. I used Peter Senge et al’s *Dance of Change* (1999) and John Bransford et al’s *How People Learn* (1999) to guide my analysis. The assessment of Teachers.net focused on its ability to encourage, implement, and support an educational initiative. I concluded that Teachers.net supplies the tools that enable educational leaders to promote their change initiative. However, it is impossible to separate the people behind the technology from the technology. The success of the 4Blocks’ community on Teachers.net is equally tied to the medium, as it is to the leadership of its program.

The participation of the teachers involved in the 4Blocks community is entirely voluntary. Teachers do not receive course credits or staff development points from their school districts. Teachers are not there to learn technology. Instead, these teachers are using technology to meet their own learning needs. Voluntary learning motivates their use of technology. When I started the PhD program I was focused on teaching teachers how to use technology with their students. Now my interest has expanded to how and why teachers use technology for their own learning needs. Why are teachers choosing to participate in online learning?

All of my experiences with online learning have been embedded within my graduate work at George Mason University. Mandatory online participation can be exhausting. I often hear students complain about participating on WebCT, Town Hall, or BlackBoard. Although online learning fascinates me, I’m not sure I would participate if I weren’t involved in a graduate program. However, multitudes of teachers are reaching out to the Internet for knowledge in specific and general areas.

The Need for New Forms of Professional Development

The road from the industrial age in the early 1900s to the information age of the 21st century has been wrought with economic, social, and political changes that have
Similarly, Vygotsky is credited with the creation of social development theory. He focused on the connections between people and the cultural context in which they act and interact in shared experiences (Vygotsky, 1978). According to Vygotsky, humans use tools that develop from a culture, such as speech and writing, to mediate their social environments.

Situated Learning

Current literature discusses knowledge and communities in context of situated learning. Like the works of Dewey and Vygotsky, situated learning theory emphasizes the importance of authentic learning contexts and social interaction. In this view, a learning environment should encompass real-life problems and support collaboration and interaction among learners and their environment (Miao, Fleschutz, & Zentel, 1999). Communities of Practice (CoP) have emerged from this learning theory. In a CoP members are self-selected and share a common goal based on a practice. Members collaborate with one another to not only do their work but also to clarify it, define how it is done and even to change how it is done. Through this mutual engagement, members also establish their identities at work (Wenger, 1998). A CoP has a professional hierarchy ranging from novice to expert. Where a member is “situated” in this hierarchy, describes how learning takes place. Knowledge is part of the organization and participation of the community. Membership is interdependent and there is a social obligation to learn from and learn for the community (Riel & Polin, in press). Therefore, learning is a natural outcome of membership in a community of practice (Brown & Duguid, 1996; Lave & Wenger, 1991; Wenger, 1998).

Communities in Teacher Professional Development

It should not be surprising that communities of practice have become a popular theme in teacher professional development. By definition a CoP focuses on a common need or interest, which is a missing component in traditional forms of professional development. In the effort to design effective professional development based on the theoretical foundation described above, semantics have become particularly confusing. Researchers interchangeably term professional development reforms as: communities of practice (Schlager, Fusco, & Schank, in press), collaboratives (Rosenholtz, 1991, Nias, Southworth, & Yeomans, 1989, Zellermayer, 1997), professional communities (Louis & Kruse, 1995), discourse communities (Putnam & Borko, 2000), teacher networks (Lieberman, 2000), and professional learning communities (Dufour & Eaker, 1998).

Regardless of the specific term used, early educational theorists and recent research emphasize the effectiveness of learning in a community. Research shows that “a self-conscious professional community was a salient characteristic of those schools most successful with students. Professional community meant that teachers pursued a clear and shared purpose for all student learning, engaged in collaborative activity to achieve
that purpose, and took collective responsibility of their students' learning” (Lieberman, 2000, p. 222).

Despite such positive impact of community learning in teacher professional development, traditional challenges such as teacher isolation, lack of time for collaboration or reflection, varied interest among teacher populations, and lack of resources remain as paralyzing obstacles in implementing such communities in schools and school districts. Educators who understand the importance of quality professional development are frustrated by the reality of providing, implementing, and receiving it.

New Electronic Tools Can Support Professional Development

Since Vygotsky’s work in the first half of the twentieth century, technology has expanded the number of tools we use in the physical world and the growing virtual world. In order to expand our professional and social environments into the virtual world, it is important that we have the necessary tools to interact in shared experiences. Without the appropriate tools, it will be impossible to mediate the virtual world and take advantage of its potential. New electronic tools can help overcome traditional challenges to even the best models of teacher professional development. They can provide continuity and optimize communication in the process of distributing information, knowledge and best practices among wide audiences (Trenton, 2001). Specifically, research shows that online forums provide (1) freedom from time constraints; (2) time for reflection; (3) opportunities to research and back up assertions; and (4) support for cost effective global communication (Anderson & Kanuka, 1997).

Tools like web-based conferencing that provide real-time communication (synchronous) and discussion boards and listserves that provide reflective discourse (asynchronous communication) facilitate professional development by optimizing time for learning, places for learning, opportunities for learning, and designs for learning (NCSD, 2001). Asynchronous tools allow users to participate in learning twenty-four hours a day, seven days a week. Email and discussion boards enable communication and collaboration among teachers with differing schedules due to job, family, or region. Places to learn are only limited by computer access. With technology tools, opportunities to learn are expanded beyond one’s geographical region to the entire world. Equally important to these exponentially increased opportunities, is the ability for teachers to communicate in the modality that best suits their learning style (Rose, 1999). If teachers prefer immediate interaction, they can choose synchronous mediums for collaboration. However, if teachers prefer a more reflective approach to collaboration, they can choose to utilize asynchronous mediums.

Online Learning Communities

Online communities of practice usually emerge from two different needs: the need to follow up on some type of course and the need to create communities of professionals based on the concepts of knowledge sharing (Trenton, 2001). They differ from face-to-face
communities of practice in their intensity of participation, representation of members, and accessibility to resources, information, and expertise (Hung & Chen, 2001). Online communities can have larger memberships that increase their intensity of participation. Participation can be seen in three main patterns: communicative learning in which learners actively express their views and respond to others; quiet learning in which learners read the content but rarely post their own ideas; and finally, non-participation in which the learner drops out of the community for periods at a time (Hammond, 2000).

The presence of technology tools that mediate constructions of knowledge do not necessarily foster learning or create a community of practice. It is the understanding of the desired outcome and the use of appropriate tools to achieve a goal that impacts learning (Blanton, Moorman & Trathen, 1998; Schlager et al, in press). Roschelle describes a community of practice as “[arising] through the coordinated use of technologies (broadly defined to include language) to arrive at mutually intelligible resolutions to shared problematic experience” (Roschelle, 1992, p.40). Participants in an online community of practice should see themselves as working towards a common goal. Their use of synchronous and asynchronous mediums should enable them to accomplish tasks that are appropriate for their level of participation. Their growth is not dependent on a specific course or learning path, but on “experience-sharing, the identification of best practices, and reciprocal support for tackling day-to-day problems in the workplace” (Trenton, 2001, p.5) Although explicit knowledge, discrete units that can be easily distributed such as definitions or data charts, are valued, equally important is tacit knowledge, “know how” convictions, ideals, or emotions about the topic (Trenton, 2001).

There are many projects focused on supporting online learning communities such as those described here.

PBS TeacherLine

In collaboration with International Society for Technology in Education (ISTE) and the National Council of Teachers of Mathematics (NCTM), PBS has developed an online professional development for teachers in mathematics and technology integration. TeacherLine offers self-paced learning opportunities, facilitated modules, which are like mini-courses, and a Community Center with synchronous tools and web-based resources for teachers to use.

Classroom Connect

Classroom Connect provides professional development for K–12 teachers and online resources to facilitate the use of the Internet in education. It is a business unit within Harcourt, Inc. The site offers a database of resources, listserves, discussion boards and live meetings organized around special interest. Beyond the web-based learning opportunities, Classroom Connect offers onsite training, conferences and newsletters.

Teachers.net

Teachers.net provides K–12 teachers with web-based resources and tools for synchronous and asynchronous communication. In March 1996, Dr. Tony Bott, then a
doctrinal candidate at UCLA, founded Teachers.net, an online learning community for teachers. Bott’s purpose in creating Teachers.net was to provide teachers information, resources, and networking tools in a mentoring community on the web at no cost (B. Reap, a personal interview, October, 13, 1999).

A survey administered on Teachers.net revealed over 100,000 hits daily, over 400,000 unique user sessions monthly, and over 30,000 mail list subscribers. It was started by a doctoral student, Tony Bott, in 1996. Bob Reap, who joined Dr. Bott at Teachers.net in 1998, says that although he does not have the numbers to prove it, Teachers.net is probably one of the busiest sites for teachers on the Internet. According to Reap, Teachers.net cultivates a strong sense of community for teachers, and in return, teachers provide the site with a tremendous amount of information and resources. The site is more successful than Bott ever imagined. (B. Reap, a personal interview, October, 13, 1999)

Tapped In

Tapped In (TI), sponsored by the National Science Foundation, SRI International, Sun Microsystems, and the Walter S. Johnson Foundation, is a platform independent, web-based, multi-user virtual environment (MUVE) that provides teachers a professional development workplace. Through synchronous and asynchronous communication, educators collaborate with each other in Tapped In on a large spectrum of topics from different locations around the world.

The goal of Tapped In “is to learn how to grow a self-sustaining on-line community of education professionals that supports and enhances the professional growth of its members over the length of their careers” (Schlager, Fusco & Schank, 1998, p.15). Membership, which has reached beyond 14,100 as of November, 2001, is comprised of teacher professional development schools, educational organizations, and individual teachers. It functions as a community for communities. TI is one of the more ambitious online teacher professional development communities because it actively seeks to embody the characteristics of a true community of practice.

In developing an online community Schlager et al. (2002) warns against the “build it and they will come” attitude. Nichani also warns against this attitude, cautioning that it ignores the fundamentals of human interaction (Nichani, 2001). There are also arguments against the potential for online learning communities. Cohen and Prusak (2001, p.163) list the following arguments:

- The inability of online environments to replicate important nuances of social meetings. These include gestures, grimaces, looks, tones, etc. that convey nonverbal communication.
- The brevity of virtual connections do not foster close human relationships that require time.
- Serendipity is limited. Chance conversations are more limited online than in face-to-face relationships. These conversations often lead to new ideas and thoughts.
- The challenge of building trusting relationships purely through virtual connections.

Although these concerns may be valid in assessing what online learning communities cannot provide learners, it is more important to focus on how it can provide solutions
that are desperately needed. Traditional forms of professional development are ineffective. New designs for professional development demonstrate success but cannot be easily distributed in traditional environments. Online learning is emerging as a viable and potentially successful mode for professional development. In order to understand how to design an online learning community for K–12 teachers and promote it as a useful, if not preferred, environment for teachers, it is essential to understand what motivates teachers to participate in one and how it influences their professional development.

Research Questions

My research questions include:

- Why do teachers voluntarily participate in online learning?
- In what ways do teachers voluntarily participate in online learning?
- How do their reasons for participation affect their level of participation?
- How do they believe their participation impacts their development as teachers?
- Does voluntary online learning foster "communities of practice" as defined in the literature?

These questions focus on understanding why teachers voluntarily participate in informal online learning and how this type of participation models/reflects/fosters good professional development practices as defined in the literature.

CHAPTER 3: METHODS

Site Selection

In order to study K–12 teacher's voluntary and sustained participation in online learning, my research site must be an established environment with a high level of voluntary teacher participation. I believe that Teachers.net is an appropriate choice because participation is not associated with structured courses or workshops promising credit or certification. The groups in Teachers.net have emerged as a grassroots effort. Voluntary teacher interest, rather than corporate initiatives, has driven the community. This voluntary initiative in Teachers.net is a critical aspect for my research site.

Organization and Design of Teachers.net

Dr. Bott, the founder of Teachers.net, designed Teachers.net so that all of its resources can be accessed through the Internet and an email account. Presently, there are over 45 different forums for K–12 educators in the areas of general interest, special interest, career support, technology, and language. Each forum has a listserv, called a mailring, and a chatboard that publishes the listserv's recent postings. Other posted resources include lesson plans, online projects, and curriculum resources. In addition to these
asynchronous modes of communication, Teachers.net also provides educators with 4 meeting rooms for synchronous discussions. Educators meet in these rooms for formal and informal meetings. Although forums normally schedule formal meetings at night, educators meet informally twenty-four hours a day.

Forums with larger memberships exchange more information, both synchronously and asynchronously than smaller ones. They also tend to meet synchronously more often than the smaller forums. Whereas some forums use Teachers.net to casually share information from their experiences, others use the tools of Teachers.net to advocate and implement specific learning initiatives. Membership size, participation, focus, and the use of Teachers.net’s tools vary in each forum. As a result, forums have created different learning environments.

Group and Participant Selection

I will ask for research participants from four groups from Teacher.net: Special Education Teachers, 4-Blocks Literacy group, the National Board for Professional Teaching Standards Certification group and the Middle School group. These groups were chosen because they represent different interests and have active chatboards, large mailings, and archived and scheduled formal synchronous meetings. Although there are other groups with similar characteristics, I am only focusing on four because it is more time efficient to recruit participants in a limited number of groups. In addition, I have the possibility for finding unique trends within groups. Three of the four groups are specific interest groups. I have chosen to focus more on these types of groups rather than general ones because general groups, such as elementary, primary, math or language arts, do not seem to have as many members. However, by including one general group, middle school, I have more of an opportunity to compare trends and generalize findings.

My interview sample will come out of my survey sample. I would like to interview twelve participants, three from each forum. The interviews will further explore the survey questions and ask additional questions.

Research Relationship

Although I will be entering the relationship as “the researcher,” I will emphasize my role as an elementary teacher. I will introduce myself as a full time teacher and a part time doctorate student. I will do this when I recruit participants and at the beginning of each interview. I hope that this will help establish more of a colleague/colleague relationship than a researcher/researchee relationship that may be viewed as more intimidating.

In addition, the virtual environments I am using for the interviews will allow me to enhance our communication beyond text. Tools such as file sharing and web browsing will allow me to share more information about myself and give the research participant more options to express him or herself. For example, I can post my picture with additional information about myself in my workspace. Knowing what the person looks like that you are conversing with can help personalize the relationship.
Data Collection

I will collect data through a survey and online synchronous interviews. My first step in data collection is to solicit research participants for my survey. A description of the research project will be posted on each group’s discussion board, within each listserv and at synchronous meetings. (See Appendix A.) It is important to advertise in each of these modes so that members who only use one or two of these tools will have the opportunity to participate. Interested participants will be asked to email the researcher or go directly to the survey by clicking on the URL within the advertisement. An email will be sent to volunteers, thanking them for their participation.

An informed consent form will be embedded in the survey. At the beginning of the survey participants will be asked to read the letter of consent and check a box indicating they have read it and are willing participants. (See Appendix B.)

The survey addresses all of my research questions. (See Appendix C.) It is mostly quantitative with the opportunity to clarify any question with qualitative data. It is quantitative because I want to obtain a “snapshot” of how a larger group believes their participation is related to their own professional development. Having this quantitative data will help me know if my interview data is representative of the larger group. This web-based survey will be designed around the principles outlined by Don Dillman in Mail and Internet Surveys: The Tailored Design Method (2000).

By following these principles I hope to avoid problems such as browser limitations, length of time required for taking it, and accessibility. The survey will also help me identify interviewees.

This survey will be developed with Response-O-Matic, a web-based tool, and hosted on the GMU server. This forty-question survey will take about 15 minutes to answer. A question at the end of my survey asks participants if they are willing to be contacted for a follow-up online interview. When participants click on submit, a Thank You page is displayed with the contents of the completed survey, so the participant can review what was entered. The contents of the survey are also emailed directly to me. A follow-up email will be sent to participants, thanking them for their time. I am considering offering some type of incentive for interviews. One possibility would be a gift certificate for the online Teachers.net catalog that offers books and teacher supplies.

If a participant indicated a willingness to be interviewed, an interview will be scheduled. Through email, participants will receive further explanation of how the interview will be conducted. Interviews will be conducted in TappedIn. Tapped In (TI) is sponsored by the National Science Foundation, SRI International, Sun Microsystems, and the Walter S. Johnson Foundation, is a platform independent, web based, multiuser virtual environment (MUVE) and provides teachers a professional development workplace. A private office space has already been setup within TI. Participants will enter TappedIn and go directly to the researcher’s office space. Interviews will last approximately an hour. Phone numbers will be exchanged before the interviews so that we can make contact if there are technical difficulties. I will offer to accept any collect calls.

Participants will receive step-by-step instructions on logging onto TI and going directly to my office space. I will schedule an hour and fifteen minutes for each interview. I want to provide some time for the participant to explore and become comfortable in the virtual environment. After the participant has had time to ask any questions
or explore, I will begin the interview using an interview guide. (See Appendix D.) The interview will be captured by TI's automatic transcription tool. When a user logs out of TI, she receives an email documenting her actions and conversations while in TI. This will automatically provide an interview transcription for the participant and me.

Below is a table that shows which questions address my research questions.

<table>
<thead>
<tr>
<th>Why do teachers voluntarily participate in online learning?</th>
<th>In what ways do teachers participate in online learning?</th>
<th>How do their reasons for participation affect their level and kind of participation?</th>
<th>How do they believe their participation impacts their development as teachers?</th>
<th>Does voluntary online learning foster "communities of practice" as defined in the literature?</th>
</tr>
</thead>
<tbody>
<tr>
<td>What influenced you to participate?</td>
<td>Describe how you participate?</td>
<td>How long do you think you will continue participating?</td>
<td>How does your participation influence your teaching?</td>
<td>What kinds of knowledge do you share with other participants in your forum?</td>
</tr>
<tr>
<td>What are some benefits to your participation?</td>
<td>How often do you participate?</td>
<td>Has the frequency of your participation changed? If so how and why?</td>
<td>How is your participation different than collaboration within your school or school district?</td>
<td>Do you have common practices and beliefs about best practices with other participants?</td>
</tr>
<tr>
<td>How did you become involved with TI?</td>
<td>How do you use the different tools (mailing, discussion board, meetings)?</td>
<td>Is your participation different on Teachers.net than it is in other professional development opportunities? How?</td>
<td>How does your participation influence your own professional development? Can you describe an example of this?</td>
<td>Are you aware of others' competencies, strengths, shortcomings and contributions?</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is your participation different with (4 Blocks/Spec. Ed Teachers/Nat’l Board) on Teachers, net than in other professional development opportunities? How?</td>
<td>Do members in your group have common tools, methods, and techniques such as forms, job aids, etc?</td>
</tr>
<tr>
<td>What is the purpose of your participation? Do you think others in your forum share the same purpose?</td>
<td>Do members in your group have a shared, evolving language (e.g. special terms, jargon, shortcuts such as acronyms, etc.)?</td>
</tr>
<tr>
<td>What do you hope to achieve through your online participation?</td>
<td>Do members depend on each other’s educational/instructional expertise?</td>
</tr>
<tr>
<td>How is your participation sustained? Why do maintain your participation? How long do you think you will continue participating?</td>
<td>Is there a quick diffusion of innovation among members in your group (e.g., rapid transfer of best practices)?</td>
</tr>
</tbody>
</table>
Data Analysis

The qualitative data will be analyzed with memos and with categorizing and contextualizing strategies. Memos will be written after each interview to facilitate analytical thinking about the data and to help remember details that may not necessarily be included in the transcripts. Predetermined, open, and emic coding will "fracture" the data so that themes around the reasons for participation can be determined. In addition, narrative analysis may be used to help understand the following questions: what is going on for a specific issue or person; how specific people sustain their participation; and identify examples of how their participation impacts professional development. Although I have not used NVivo before, I am considering using this data analysis software for ordering data, generating coding categories, and cross-linking data and generated memos.

The quantitative data from the online survey will be entered and analyzed using SPSS software. This data will provide information on the research questions from a larger sample of participants than interviewed. I will use descriptive statistics to describe characteristics of the sample. Collected data will be nominal or ordinal and that will determine the statistical procedure to be used. I will use a Chi-square test with nominal level data to test the statistical independence of two variables. When using this test the P value will be set at .05.

Validity

In order to avoid possible threats and to test the validity of my conclusions, I will employ the following strategies suggested by Maxwell (1996): triangulation, feedback, "rich data" and quasi-statistics.

Triangulation requires a variety of methods to be used when collecting data. By using interviews, surveys and memos, I am counterbalancing flaws that may be inherent in a single method. Throughout the study I will solicit feedback from my committee when forming theories or generalizations from my data. This can help identify and deter biases or skewed logic that could threaten the conclusions.

The qualitative aspect of this study inherently provides rich data. Interview transcripts capture details that can be found and referred to long after the interview has taken place. Writing memos creates additional "rich data" because reactions and initial theories and/or conclusions are documented before the actual analysis of the data.

Finally, the qualitative survey functions as quasi-statistics, which better inform the qualitative data. Although one would expect the statistics and the qualitative data to support each other, discrepancies help reveal possible flaws in the study. It is essential to use all of these strategies to protect the data, and ultimately the conclusions, from validity threats.
TIMELINE OF PROCEDURES

<table>
<thead>
<tr>
<th>Activity</th>
<th>Task Analysis</th>
<th>Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Recruit research participants</td>
<td>1) Join Teacher.net mailings</td>
<td>September, 2002–November, 2002</td>
</tr>
<tr>
<td></td>
<td>2) Post requests on discussion boards</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) Attend formal and informal synchronous meetings</td>
<td></td>
</tr>
<tr>
<td>2: Send follow-up emails to willing participants</td>
<td>1) Send participants URL of survey</td>
<td>September, 2002–November, 2002</td>
</tr>
<tr>
<td></td>
<td>2) Thank participants for time</td>
<td></td>
</tr>
<tr>
<td>3: Conduct online interviews</td>
<td>1) Schedule interviews</td>
<td>September, 2002–December, 2002</td>
</tr>
<tr>
<td></td>
<td>2) Conduct interviews</td>
<td></td>
</tr>
<tr>
<td>4: Analyze survey results.</td>
<td>1) Enter data into SPSS.</td>
<td>November/December, 2002</td>
</tr>
<tr>
<td></td>
<td>2) Developing coding categories from qualitative data using Nvivo.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) Extract data.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2) Developing coding categories from transcripts using Nvivo.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) Extract data from transcripts.</td>
<td></td>
</tr>
<tr>
<td>7: Prepare for defense</td>
<td></td>
<td>February/March, 2003</td>
</tr>
<tr>
<td>9: Graduate</td>
<td></td>
<td>May 17, 2003</td>
</tr>
</tbody>
</table>
APPENDIX B

REFERENCES

(Omitted because of length)

APPENDICES

APPENDIX A—Project Description/Advertisement

Educators desperately need alternative methods of distributing and receiving professional development! If you are participating in Teachers.net, you probably already know this. Help solve the problem by participating in a research study that identifies why teachers like you voluntarily participate in informal online learning and how it influences your professional development.

As a fellow teacher and part-time doctoral student I know that your time is scarce. However, with only 15 minutes you can answer a web-based survey and be a part of research! The ultimate goal of this research is to help school districts design online learning opportunities that are effective for K–12 teachers’ professional development. If you are a willing participant, please email me or click on the link below to go directly to the survey. Thank you!

APPENDIX B—Informed Consent Letter

Dear Teachers,

This letter is to request your permission for participation in a research project that explores how teachers are accessing and enhancing their professional development through participation in an online environment. I am specifically interested in teacher participation that is independent of online coursework or any other credit. This study investigates why K–12 teachers voluntarily participate in informal online learning and how it influences their professional development. The ultimate goal of this research is to help school districts develop or invest in online learning opportunities that will be successful for their teachers.

This research project is based on survey data and twelve to fifteen hour long interviews with teachers who participate in various groups on Teachers.net. Participants who take the survey may indicate on the survey whether or not they would like to be interviewed. All participants who indicate a willingness to be interviewed may not be interviewed. Surveys will be developed with the web-based tool, Response-O-Matic and hosted on the GMU server. Interviews will be conducted in an online environment. While it is understood that no computer transmission can be perfectly secure, reasonable efforts will be made to protect the confidentiality of your transmission.

I will be the only one who has access to these transcriptions. If at any time during the interview, you choose to withdraw from the project, survey and interview data will be destroyed immediately. Your participation is voluntary. Although there are no
foreseeable risks in participation of this study, you may withdraw from the study at any time and for any reason. There is no penalty for not participating or withdrawing. Research data will be collected between September and December of 2002. Participation and records of participation will be confidential. To ensure that data collected cannot be linked back to participants, data will be kept in a secure location. In addition, names and identifiable information will not be included in the dissertation.

I am a doctoral student at George Mason University in Fairfax, VA. This research is part of my dissertation. I am working under the direction of my advisor, Dr. Debra Sprague (dspragu1@gmu.edu) at the Graduate School of Education. If you have questions regarding this project, please contact me at (703)931-2391 or at eriddle@acps.k12.va.us. You may also contact the George Mason University Office of Sponsored Programs at (703) 993-2295. This project has been reviewed according to the George Mason University procedures governing your participation in this research.

A check in the box below indicates your willingness to participate in the study. Please return the signed letter to me within three days, if possible. Thank you.

Sincerely,
Elizabeth M. Riddle

I have read the consent form above. I understand the parameters of this research study and I am a willing participant.

APPENDIX C–Survey

(Omitted because of length)

APPENDIX D–Interview Guide

Interview Guide

<table>
<thead>
<tr>
<th>Tell my how you became involved with the (specific group) on TN?</th>
</tr>
</thead>
<tbody>
<tr>
<td>What influenced you to participate?</td>
</tr>
<tr>
<td>Describe how you participate?</td>
</tr>
<tr>
<td>What are the benefits to your participation?</td>
</tr>
<tr>
<td>Is your participation different with (4 Blocks/Spec. Ed Teachers/ Nat’l Board) on Teachers.net than in other non-mandatory professional development opportunities? How?</td>
</tr>
<tr>
<td>Is your participation different than it is in mandatory professional development opportunities? Why?</td>
</tr>
<tr>
<td>Question</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>How do you use the different tools (mailing, discussion board, meetings)?</td>
</tr>
<tr>
<td>How do these tools influence your participation?</td>
</tr>
<tr>
<td>How often do you participate?</td>
</tr>
<tr>
<td>Why do you maintain your participation? How long do you think you will</td>
</tr>
<tr>
<td>continue participating?</td>
</tr>
<tr>
<td>How does your participation influence your teaching?</td>
</tr>
<tr>
<td>How is your participation different than collaboration within your</td>
</tr>
<tr>
<td>school or school district?</td>
</tr>
<tr>
<td>Do you share similar beliefs about best practices with other</td>
</tr>
<tr>
<td>participants?</td>
</tr>
<tr>
<td>Can you think of an example of how members depend on each others'</td>
</tr>
<tr>
<td>educational/instructional expertise?</td>
</tr>
<tr>
<td>In what ways does this group seem like a community?</td>
</tr>
</tbody>
</table>