Method 3 - Examples from text

2–15. Express the force as a Cartesian vector.

\[F = 500 \text{ N} \]

2–63. The force \(F \) acts on the bracket within the octant shown. If \(F = 400 \text{ N} \), \(\beta = 60^\circ \), and \(\gamma = 45^\circ \), determine the \(x \), \(y \), \(z \) components of \(F \).

\[F_x = 300 \text{ N} \text{ and } F_z = 600 \text{ N} \text{, respectively, and } \beta = 60^\circ, \text{ determine the magnitude of } F \text{ and its } y \text{ component. Also, find the coordinate direction angles } \alpha \text{ and } \gamma. \]
2–81. The pole is subjected to the force \(\mathbf{F} \), which has components acting along the \(x, y, z \) axes as shown. If the magnitude of \(\mathbf{F} \) is 3 kN, \(\beta = 30^\circ \), and \(\gamma = 75^\circ \), determine the magnitudes of its three components.

2–82. The pole is subjected to the force \(\mathbf{F} \) which has components \(F_x = 1.5 \text{ kN} \) and \(F_z = 1.25 \text{ kN} \). If \(\beta = 75^\circ \), determine the magnitudes of \(\mathbf{F} \) and \(F_y \).