Example 7.1

Problem 1

All problem solutions must include an FBD.

Determine the tension developed in wires CA and CB required for equilibrium of the 10-kg cylinder. Take $\theta = 40^\circ$.

\[W = \left(\frac{10\text{ kg}}{g}\right)\left(9.81 \text{ m/s}^2\right) = 98.1 \text{ N} \]

1. \[-T_a \cos 30^\circ + T_b \cos 40^\circ = 0 \]
2. \[T_a \sin 30^\circ + T_b \sin 40^\circ = 98.1 \]

\[T_a = T_b \frac{\cos 40^\circ}{\cos 30^\circ} \]
\[T_b \left[\cos 40^\circ \sin 30^\circ + \sin 40^\circ \right] = 98.1 \]
\[T_b = \frac{98.1 \text{ N}}{\cos 40^\circ \sin 30^\circ + \sin 40^\circ} = 60.4 \text{ N} \]
\[T_a = 90.4 \frac{\cos 40^\circ}{\cos 30^\circ} = 82.0 \text{ N} \]
Example 7.2

Problem 7.2

Members of a truss are connected to the gusset plate. If the forces are concurrent at point O, determine the magnitudes of F and T for equilibrium. Take $\theta = 30^\circ$.

\[F_x = 6 \text{ kN} \]
\[F_y = 5 \text{ kN} \]

\[T = 6 \cos 30^\circ \left[8 + 5 \cos 45^\circ \right] = 12.3 \text{ N} \]

\[F = 5 \sin 45^\circ + (12.3) \sin 30^\circ = 10.2 \text{ N} \]
Example 7.3

If cylinder E weighs 30 lb and $\theta = 15^\circ$, determine the weight of cylinder F.

4 Eqs. = 4 unknowns T_D, $T_C B$, T_A, W_F

Solving Eq. set yields 000

$T_D = 112 \text{ lb}$

$T_A = 137 \text{ lb}$

$T_C B = 100 \text{ lb}$

$W_F = 183 \text{ lb}$
Example 7.4

Problem 5

Determine the mass of each of the two cylinders if they cause a sag of $s = 0.5 \text{ m}$ when suspended from the rings at A and B. Note that $s = 0$ when the cylinders are removed.

Assume system is "massless" without cylinders.

Problem is symmetric so $W_A = W_B$.

Solution:

Unstretched length of spring is...

$$L_{SB} = \left[1.5^2 + 2^2 \right]^{\frac{1}{2}} = 2.5 \text{ m}$$

At position shown $L = \left[(1.5+0.5)^2 + 2^2 \right]^{\frac{1}{2}} = 2.83$

Spring force is then $f = k \left[L - L_{SB} \right] = 100 \text{ N/m} \left[2.83 - 2.5 \right] \text{ m} = 32.8 \text{ N}$

FBD's of A & B:

\[\begin{align*}
W_A & = 32.8 \text{ N} \\
T_A & = \frac{2}{1} = 1 \\
\theta & = 45^\circ \\
W_B & = 32.8 \text{ N}
\end{align*} \]

FBD A:

\[\begin{align*}
-2f_x &= -32.8 \text{ N} - T_{AB} = 0 \\
T_{AB} &= 32.8 \text{ N}
\end{align*} \]

FBD B:

\[\begin{align*}
-2f_x &= -T_{AB} + 32.8 \text{ N} = 0 \\
W_B &= 32.8 \text{ N}
\end{align*} \]

\[\begin{align*}
W_A &= 32.8 \text{ N} \\
W_B &= 32.8 \text{ N}
\end{align*} \]